Unable to meet the tolerance without using more than 1666 mesh points.

3 visualizaciones (últimos 30 días)
I have a coupled non-linear differential equations
(d^2 f)/(dy^2 )+m2*g2*dB/dy-2*i*R2*g1*f - g3*G1*y - R4*g1 = 0
(d^2 B)/(dy^2 )+t4/(1-i*H1)*df/dy=0
(d^2 T)/(dy^2 )-1/2*g4*G1*PR*(f+ ̅f)+ER*PR*[g5*(df/dy*d ̅f/dy)+g6*m2*(dB/dy*dB̅/dy)]=0, where ̅f is conjugate of f and B̅ is conjugate of B
Boundary conditions are
f=0 at y=0
f=C1 at y=1
And
dB/dy-(t4/(P1* (1-i*H1 ) ))* B=0 at y=0
dB/dy+(t4/(P2 (1-i*H1 ) ))* B=0 at y=1
and
T=0 at y=0
T=1 at y=1
I already got the solutions and graph for the first two equations with the help received from Torsen, but now i have extended the problem for three equations, when i run the program, i get an error "Unable to meet the tolerance without using more than 1666 mesh points", I tried using NMax but could not get the solution
Matlab programs
close all
clc
p=0.1;
P1=2;
P2=2;
b1=0.00021;
b2=0.000058;
S1=0.005;
S2=580000;
G1=2;
m2=20;
R1=997.1;
R2=3;
C1=0;
R3=4420;
H1=0.25;
K1=3;
R4=1;
PR=7.0;
ER= 2.0;
cf=4179;
cs=0.56;
K2=0.613;
K3=7.2;
t1=(1./((1-p).^2.5));
t2=(1-p)+(p.*(R3./R1));
t3=(1-p)+p.*((R3.*b2)./(R1.*b1));
S=(S2./S1);
t4=1-((3*(1-S).*p)./((2+S)+(1-S).*p));
t5=(1-p)+(p.*R3.*cs)./(R1.*cf);
t6=(1+2.*(K2./K3)+2.*p.*(1-K2./K3))./(1+2.*(K2./K3)-p.*(1-K2./K3));
g1=t2./t1;
g2=1/t1;
g3=t3./t1;
g4=t5./t6;
g5=t1./t6;
g6=1./(t4.*t6);
m1=(t4./(P1.*(1-1i.*H1)));
m2=(t4./(P2.*(1-1i.*H1)));
dydx=@(x,y)[y(4);
y(5);
y(6);
-m2.*g2.*y(4)+2.*1i.*R2.*g1.*y(1)+g3.*G1.*x+R4.*g1;
(-t4./(1-1i.*H1)).*y(3);
1/2.*g4.*G1.*PR.*(y(1)+conj(y(1)))-ER.*PR.*(g5.*(y(4).*conj(y(4))+g6.*m2.*(y(5).*conj(y(5)))))];
BC = @(ya,yb)[ya(1)-0;yb(1)-C1;ya(3)-0;yb(3)-1.0;ya(5)-m1.*ya(2);yb(5)+m2.*yb(2)];
yinit = [0.01;0.01;0.01;0.01;0.01;0.01];
solinit = bvpinit(linspace(0,1,50),yinit);
% options = bvpset('AbsTol',1e-6,'RelTol',1e-4,'stats','on','Nmax',1000);
options = bvpset('AbsTol',1e-6);
% options = bvpset('RelTol',1e-4);
%options = bvpset('stats','on');
%options = bvpset('Nmax',1000);
U1 = bvp4c(dydx,BC,solinit,options);
hold on
plot(U1.x,real(U1.y(3,:)),'b','linewidth',1.5)
plot(U1.x,imag(U1.y(3,:)),'r','linewidth',1.5)
  5 comentarios
Syed Mohiuddin
Syed Mohiuddin el 10 de En. de 2023
I use R2016b, for the previous question also i did not get the option to accept the answer, please provide the option for the previous question too. Thank you

Iniciar sesión para comentar.

Respuesta aceptada

Torsten
Torsten el 10 de En. de 2023
Movida: Torsten el 10 de En. de 2023
Seems to work (see above).

Más respuestas (0)

Categorías

Más información sobre Programming en Help Center y File Exchange.

Productos


Versión

R2016b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by