lscurve fit problem issue in Money Rivlin model

14 visualizaciones (últimos 30 días)
SATYA PAL
SATYA PAL el 20 de Feb. de 2023
Comentada: Star Strider el 23 de Feb. de 2023
Hello,
I have got a function with respect to different variables. I want to make sum of that function with respect to the variables. my equations are
fun1=@(a,x1) a(1).*(2*x1-2./x1.^2)+a(2).*(2-2./x1.^3)+a(3).*(6* x1.^2-6*x1-6./x1.^4+6./x1.^3 +6./x1.^2-6)
and
fun2=@(a,x2) a(1).*(2*x2)+a(2).*(2*x2)+a(3).*(4*x2.^3)
I want to add fun1 and fun2
fun_sum= @(a,x1,x2) fun(a,x1)+ fun(a,x2)
now by applying lscurvefit I want values of a(1), a(2) and a(3)
I am looking forward for reply

Respuesta aceptada

Star Strider
Star Strider el 20 de Feb. de 2023
I am not certain what you want to do.
Two independent variables may require one or two dependent variables, however with only one dependent variable, it will need to be duplicated to two columns (assuming all data are column-oriented) —
fun1=@(a,x1) a(1).*(2*x1-2./x1.^2)+a(2).*(2-2./x1.^3)+a(3).*(6* x1.^2-6*x1-6./x1.^4+6./x1.^3 +6./x1.^2-6);
fun2=@(a,x2) a(1).*(2*x2)+a(2).*(2*x2)+a(3).*(4*x2.^3);
fun12 = @(a,x1x2) [fun1(a,x1x2(:,1)) fun2(a,x1x2(:,2))];
x1x2 = rand(12,2);
y1y2 = rand(12,2);
B0 = rand(3,1);
B = lsqcurvefit(fun12, B0, x1x2, y1y2) % Two Dependent Variables
Local minimum found. Optimization completed because the size of the gradient is less than the value of the optimality tolerance.
B = 3×1
-0.0744 0.0176 -0.0004
y1y1 = [1 1].*y1y2(:,1); % Duplicate First Column
B = lsqcurvefit(fun12, B0, x1x2, y1y1) % One Dependent Variable, Duplicated
Local minimum found. Optimization completed because the size of the gradient is less than the value of the optimality tolerance.
B = 3×1
-0.0865 0.0210 -0.0004
.
  20 comentarios
SATYA PAL
SATYA PAL el 23 de Feb. de 2023
Thanks a lot Sir
Star Strider
Star Strider el 23 de Feb. de 2023
As always, my pleasure!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Resizing and Reshaping Matrices en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by