how to find equlibrium point of 5 non linear system with numerical method
8 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Latifah
el 2 de Abr. de 2023
Comentada: Latifah
el 2 de Abr. de 2023
I have a system of 5 non linear ordinary differential equations with variable coefficients . I am trying to find the equilibrium points by hand but it seems like it is not possible without the help of a numerical method. What would be a good method to calculate equilibrium points of the system?
Another question (somehow related to the problem above): Would it be possible to check the stability of the equilibrium points and then draw a bifurcation diagram? If so, please suggest some way out!
e1 = 13;
g = 0.0125;
h = 0.284253;
f = 0.05;
q1 = 0;
k1 = 10;
d1 = 0.0412;
e2 = 0.0188;
j = 0.0082;
q2 = 0;
k2 = 10;
d2 = 0.0288;
b = 2;
d4 = 0.1152;
e3 = 0.166667;
a = 1.7;
q3 = 0;
k3 = 10;
d3 = 0.1152;
r = 0.5;
m = 1.02;
q4 = 0;
k4 = 10;
dydt(1) = e1 + (g*y(3)*y(1)/(h + y(3))) + (f*y(3)*y(1)) - (y(1)*(1 + ((q1/k1)*y(1)))) - (d1*y(1));
dydt(2) = e2*y(2) + (f*y(1)*y(3)) - (j*y(2)) - (y(2)*(1 + ((q2/k2)*y(2)))) - (d2*y(2));
dydt(3) = (b*e2*y(2)) - (d4*y(3));
dydt(4) = e3*y(4) + (j*y(2)) - (a*y(4)) - (y(4)*(1 + ((q3/k3)*y(4)))) - (d3*y(4));
dydt(5) = (r*y(5)*(1 - (m*y(5)))) + (a*y(4)) - y(5)*(1 + ((q4/k4)*y(5)));
0 comentarios
Respuesta aceptada
Torsten
el 2 de Abr. de 2023
I don't know if the result is as expected.
format long
yequi = fsolve(@fun,rand(5,1))
fun(yequi)
function dydt = fun(y)
e1 = 13;
g = 0.0125;
h = 0.284253;
f = 0.05;
q1 = 0;
k1 = 10;
d1 = 0.0412;
e2 = 0.0188;
j = 0.0082;
q2 = 0;
k2 = 10;
d2 = 0.0288;
b = 2;
d4 = 0.1152;
e3 = 0.166667;
a = 1.7;
q3 = 0;
k3 = 10;
d3 = 0.1152;
r = 0.5;
m = 1.02;
q4 = 0;
k4 = 10;
dydt(1) = e1 + (g*y(3)*y(1)/(h + y(3))) + (f*y(3)*y(1)) - (y(1)*(1 + ((q1/k1)*y(1)))) - (d1*y(1));
dydt(2) = e2*y(2) + (f*y(1)*y(3)) - (j*y(2)) - (y(2)*(1 + ((q2/k2)*y(2)))) - (d2*y(2));
dydt(3) = (b*e2*y(2)) - (d4*y(3));
dydt(4) = e3*y(4) + (j*y(2)) - (a*y(4)) - (y(4)*(1 + ((q3/k3)*y(4)))) - (d3*y(4));
dydt(5) = (r*y(5)*(1 - (m*y(5)))) + (a*y(4)) - y(5)*(1 + ((q4/k4)*y(5)));
end
4 comentarios
Torsten
el 2 de Abr. de 2023
Is it possible for the equilibrium point to be negative?
It's the numerical error in the equation fun(yequi) that is negative, not the solution itself (yequi) (if this is what you mean with your question).
Más respuestas (0)
Ver también
Categorías
Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!