Converged neural network states
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Siva
el 12 de Abr. de 2015
Respondida: Siva
el 23 de Abr. de 2015
Hi -
I am wondering why I don’t arrive at the same trained network (net1f and net3f) even though I believe I have started from the same initial network state.
clear all, pack [x,t] = simplefit_dataset;
%% 1st trial net1i = feedforwardnet( 1); net1i= configure( net1i, x, t) ; IW1i= net1i.IW ; LW1i= net1i.LW ; b1i= net1i.b ; net1f = trainscg( net1i, x, t); IW1f= net1f.IW ; LW1f= net1f.LW ; b1f= net1f.b ;
%% 3rd trial with controlled initialization net3i = feedforwardnet( 1); net3i= configure( net3i, x, t) ; net3i.IW= IW1i ; net3i.LW= LW1i ; net3i.b= b1i ; net3f = trainscg( net3i, x, t); IW3f= net3f.IW ; LW3f= net3f.LW ; b3f= net3f.b ;
I appreciate your help.
Thanks. Siva
0 comentarios
Respuesta aceptada
Greg Heath
el 23 de Abr. de 2015
You have to explicitly reset the RNG state to the same initial value. To illustrate this. Check the RNG state before each training.
Hope this helps.
Greg.
0 comentarios
Más respuestas (1)
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!