Converged neural network states

2 visualizaciones (últimos 30 días)
Siva
Siva el 12 de Abr. de 2015
Respondida: Siva el 23 de Abr. de 2015
Hi -
I am wondering why I don’t arrive at the same trained network (net1f and net3f) even though I believe I have started from the same initial network state.
clear all, pack [x,t] = simplefit_dataset;
%% 1st trial net1i = feedforwardnet( 1); net1i= configure( net1i, x, t) ; IW1i= net1i.IW ; LW1i= net1i.LW ; b1i= net1i.b ; net1f = trainscg( net1i, x, t); IW1f= net1f.IW ; LW1f= net1f.LW ; b1f= net1f.b ;
%% 3rd trial with controlled initialization net3i = feedforwardnet( 1); net3i= configure( net3i, x, t) ; net3i.IW= IW1i ; net3i.LW= LW1i ; net3i.b= b1i ; net3f = trainscg( net3i, x, t); IW3f= net3f.IW ; LW3f= net3f.LW ; b3f= net3f.b ;
I appreciate your help.
Thanks. Siva

Respuesta aceptada

Greg Heath
Greg Heath el 23 de Abr. de 2015
You have to explicitly reset the RNG state to the same initial value. To illustrate this. Check the RNG state before each training.
Hope this helps.
Greg.

Más respuestas (1)

Siva
Siva el 23 de Abr. de 2015
Thanks Greg!
Siva

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by