Constraints on the actor action outputs in DDPG RL LQR type control

5 visualizaciones (últimos 30 días)
Hello Everyone,
I am trying to train an agent for LQR type control. My observation are 59x1 vector of states and my control input is 6x1 vector. Now my control inputs are voltage and power setpoints which need to contrainted. My inputs are [voltage1, power1, voltage2, power2, voltage3, power3]. Now the voltages need to be constrained betweem 0.95--1.05 and each power should be positive with Pmax seperately for each one. I am bit confused on how to enforce these constaints in actor neural network. Any help will be appreciated. My sample code is as follows:
%% Critic neural network
obsPath = featureInputLayer(obsInfo.Dimension(1),Name="obsIn");
actPath = featureInputLayer(actInfo.Dimension(1),Name="actIn");
commonPath = [
concatenationLayer(1,2,Name="concat")
quadraticLayer
fullyConnectedLayer(1,Name="value", ...
BiasLearnRateFactor=0,Bias=0)
];
% Add layers to layerGraph object
criticNet = layerGraph(obsPath);
criticNet = addLayers(criticNet,actPath);
criticNet = addLayers(criticNet,commonPath);
% Connect layers
criticNet = connectLayers(criticNet,"obsIn","concat/in1");
criticNet = connectLayers(criticNet,"actIn","concat/in2");
criticNet = dlnetwork(criticNet);
critic = rlQValueFunction(criticNet, ...
obsInfo,actInfo, ...
ObservationInputNames="obsIn",ActionInputNames="actIn");
getValue(critic,{rand(obsInfo.Dimension)},{rand(actInfo.Dimension)})
%% Actor neural network
Biass = zeros(6,1); % no biasing linear actor
actorNet = [
featureInputLayer(obsInfo.Dimension(1))
fullyConnectedLayer(actInfo.Dimension(1), ...
BiasLearnRateFactor=0,Bias=Biass)
];
actorNet = dlnetwork(actorNet);
actor = rlContinuousDeterministicActor(actorNet,obsInfo,actInfo);
agent = rlDDPGAgent(actor,critic);
getAction(agent,{rand(obsInfo.Dimension)}) %% getting error while executing this line of command
%%

Respuesta aceptada

Shivansh
Shivansh el 25 de Oct. de 2023
Hi Muhammad,
I understand that you are trying to put constraints on values for voltages and power in the actor neural network. I can provide you an example approach and you can modify it according to your model environment and problem requirement.
Since the voltage and power constraints are different, it's better to separate them into two different layers in your actor network. This way, you can apply different constraints to each output.
Now, to enforce the voltage constraints between 0.95 and 1.05, you can add a custom activation layer after the voltage output layer. This activation layer should clamp the output values within the desired range. Here's an example of how you can add the voltage constraints:
voltageOutputLayer = fullyConnectedLayer(2, ...
'BiasLearnRateFactor', 0, 'Bias', Biass(1:2));
voltageActivationLayer = customClampLayer(0.95, 1.05, 'VoltageClamp');
powerOutputLayer = fullyConnectedLayer(4, ...
'BiasLearnRateFactor', 0, 'Bias', Biass(3:6));
actorNet = [
featureInputLayer(obsInfo.Dimension(1))
voltageOutputLayer
voltageActivationLayer
powerOutputLayer
];
In this example, customClampLayer is a custom layer that clamps the values between a specified range. You can implement it as follows:
classdef customClampLayer < nnet.layer.Layer
properties
LowerBound
UpperBound
end
methods
function layer = customClampLayer(lowerBound, upperBound, name)
layer.LowerBound = lowerBound;
layer.UpperBound = upperBound;
layer.Name = name;
end
function Z = predict(layer, X)
Z = max(layer.LowerBound, min(layer.UpperBound, X));
end
end
end
Similarly, you can enforce the power constraints individually for each power output, you can add a custom activation layer after each power output layer. This activation layer should ensure that the power values are positive and do not exceed the maximum power limit.
The given custom activation layers can achieve the required behaviour and constraint the power and voltage values in the given actor neural network. The above approach and code snippet is a starting point, and you can modify it to fit your requirement.
For more information regarding the custom deep learning layer, you can refer to the following documentation https://www.mathworks.com/help/deeplearning/ug/define-custom-deep-learning-intermediate-layers.html.
Hope it helps!
  2 comentarios
Muhammad Nadeem
Muhammad Nadeem el 29 de Oct. de 2023
Perfect. Thank you so much for the detailed response
Emmanouil Tzorakoleftherakis
Emmanouil Tzorakoleftherakis el 2 de Nov. de 2023
By the way, another way would be to add upper and lower limits in the action space definition. That said, in order to avoid that agent outputs always hitting the constraints you set, you need to also add a tanh and a scaling layer as final layers of your actor. That way you can scale the output in the desired range before any final clamping happens

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Build Deep Neural Networks en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by