Categorical covariates in parameter estimation
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Abed Alnaif
el 3 de Nov. de 2023
Comentada: Abed Alnaif
el 24 de Nov. de 2023
Hello,
Do the SimBIology parameter estimation functions support categorical covariates?
Thank you,
Abed
2 comentarios
Joe Myint
el 4 de Nov. de 2023
Editada: Joe Myint
el 4 de Nov. de 2023
Hello Abed,
Take a look at this example and see if it is what you are looking for. This example shows how to estimate category-specific (such as young versus old, male versus female) parameters using PK profile data from multiple individuals.
Hope it helps, Joe
Respuesta aceptada
Arthur Goldsipe
el 6 de Nov. de 2023
Do you want to do nonlinear regression or nonlinear mixed effects (NLME)? The feature Joe mentions in his comment only applies to nonlinear regression. If you want to use categorical covariates with sbiofitmixed (for NLME), then there's no direct support for categorical covariates. I have an idea for a workaround, but I'd need to think about it a little more. If you are interested in the workaround, please let me know and I can investigate it a bit further. It would also be helpful to know more about your covariate model. How many categories are in your categorical covariate? What does your covariate model look like?
3 comentarios
Jeremy Huard
el 23 de Nov. de 2023
Editada: Jeremy Huard
el 23 de Nov. de 2023
I would recommend to convert categorical covariates into dummy variables or one-hot vectors, where each category is converted into a new binary column.
However, I would only use categories and all zeros would encode for the last category.
Please note that I will be using a dataset shipped with MATLAB that does not contain time courses. But the categorical variable it contains will help illlustrate the general idea.
load patients
T = table(Age,Height,Weight,Smoker,...
SelfAssessedHealthStatus,Location,...
'RowNames',LastName);
T = convertvars(T,@iscellstr,"string")
In the table above, the variable SelfAssessedHealthStatus contains 4 categories: Poor, Fair, Good, Excellent.
You can generate dummy variables for it with:
Tstatus = convertvars(T(:,"SelfAssessedHealthStatus"), "SelfAssessedHealthStatus","categorical");
Tstatus = onehotencode(Tstatus);
T = [Tstatus, T]
Now, we can use Poor as the reference group, meaning that when all other groups are 0, then the category is Poor:
T.Poor(:) = 0
During fitting, we can now use a covariate model such as:
Here, (the population estimate) will correspond to the case where SelfAssessedHealthStatus = Poor, will correspond to SelfAssessedHealthStatus = Fair, will correspond to SelfAssessedHealthStatus = Good, will correspond to SelfAssessedHealthStatus = Excellent.
I hope this helps.
Best regards,
Jérémy
Más respuestas (1)
Sulaymon Eshkabilov
el 3 de Nov. de 2023
Yes, it should work. See this doc: https://www.mathworks.com/help/simbio/ref/groupeddata.createdoses.html
0 comentarios
Comunidades de usuarios
Más respuestas en SimBiology Community
Ver también
Categorías
Más información sobre Import Data en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!