square matrix containing Chebyshev polynomials becomes singular when its size becomes greater than a certain value

9 visualizaciones (últimos 30 días)
Hi, I've been trying to approximate functions with Chebyshev polynomials. In this case, I'm looking at , and I've approximated as where are coefficients and is the k-th Chebyshev polynomial. I've got N+1 points inside the interval [0,4] such that . My goal is to find what the coefficients are, and I did this by creating a matrix equation of the form and solving for x, where x is a vector of length N+1 containing the coefficients . So I applied the previous Chebyshev approximation on all N+1 points and got a matrix equation where A = , x = and B= , and I solved for x. Now, in order to simplify things, I chose my points to be evenly spaced within [0,4]. When trying out my code, I would get a certain vector for x and compare it via chebcoeffs with the actual coefficients. My estimated coefficients from x got increasingly closer to those obtained from chebcoeffs as I increased N starting from 1, as one would expect. However, when I hit N = 56 and onwards, my matrix A began to not be full rank, and hence be singular. I'm not sure why this happens, even though my definition of all matrices and vectors appears correct from a theoretical standpoint. Here's the full code:
t0 = 0;
tf = 4;
N = 56;
t = chebfun('t',[t0 tf]);
A = zeros(N+1,N+1);
d = zeros(N+1,1);
for c=0:N
d(c+1,1)=tf*c./(N);
end
h = chebpoly(0:N,[t0 tf]);
for r=0:N
A(r+1,:)= h(d(r+1,1));
end
A
B = zeros(N+1,1)
B(:,1) = (d).^3-(d)+(d).^2;
B
X= A\B
b=chebcoeffs((t).^3-(t)+(t).^2) %for comparison with actual chebyshev coefficients
rank(A)
  6 comentarios
Chang-Yu
Chang-Yu el 28 de Nov. de 2023
@Torsten the function chebyshevT only creates chebyshev functions on the interval [-1,1], but the chebyshev functions that I'm using are on the interval [0,4] (this can be done via chebpoly, which scales them appropiately). Do you know how to make chebyshev functions scaled onto the interval [0 4] through chebyshevT?

Iniciar sesión para comentar.

Respuesta aceptada

Torsten
Torsten el 28 de Nov. de 2023
Editada: Torsten el 28 de Nov. de 2023
t0 = 0;
tf = 4;
N = 75;
syms x
h = chebyshevT(0:N, x);
A = zeros(N+1,N+1);
d = zeros(N+1,1);
for c=1:N+1
d(c,1) = 0.5*(t0+tf)+0.5*(tf-t0)*cos((2*c-1)/(2*(N+1))*pi);
end
for c=1:N+1
A(c,:)= vpa(subs(h,x,cos((2*c-1)/(2*(N+1))*pi)));
end
A
A = 76×76
1.0000 0.9998 0.9991 0.9981 0.9966 0.9947 0.9923 0.9896 0.9864 0.9827 0.9787 0.9743 0.9694 0.9641 0.9584 0.9523 0.9458 0.9389 0.9316 0.9239 0.9158 0.9073 0.8984 0.8891 0.8795 0.8694 0.8591 0.8483 0.8372 0.8257 1.0000 0.9981 0.9923 0.9827 0.9694 0.9523 0.9316 0.9073 0.8795 0.8483 0.8138 0.7763 0.7357 0.6923 0.6463 0.5978 0.5469 0.4940 0.4392 0.3827 0.3247 0.2655 0.2052 0.1442 0.0826 0.0207 -0.0413 -0.1032 -0.1646 -0.2254 1.0000 0.9947 0.9787 0.9523 0.9158 0.8694 0.8138 0.7496 0.6773 0.5978 0.5119 0.4205 0.3247 0.2254 0.1237 0.0207 -0.0826 -0.1849 -0.2853 -0.3827 -0.4759 -0.5641 -0.6463 -0.7216 -0.7891 -0.8483 -0.8984 -0.9389 -0.9694 -0.9896 1.0000 0.9896 0.9584 0.9073 0.8372 0.7496 0.6463 0.5295 0.4017 0.2655 0.1237 -0.0207 -0.1646 -0.3051 -0.4392 -0.5641 -0.6773 -0.7763 -0.8591 -0.9239 -0.9694 -0.9947 -0.9991 -0.9827 -0.9458 -0.8891 -0.8138 -0.7216 -0.6142 -0.4940 1.0000 0.9827 0.9316 0.8483 0.7357 0.5978 0.4392 0.2655 0.0826 -0.1032 -0.2853 -0.4577 -0.6142 -0.7496 -0.8591 -0.9389 -0.9864 -0.9998 -0.9787 -0.9239 -0.8372 -0.7216 -0.5811 -0.4205 -0.2455 -0.0620 0.1237 0.3051 0.4759 0.6304 1.0000 0.9743 0.8984 0.7763 0.6142 0.4205 0.2052 -0.0207 -0.2455 -0.4577 -0.6463 -0.8017 -0.9158 -0.9827 -0.9991 -0.9641 -0.8795 -0.7496 -0.5811 -0.3827 -0.1646 0.0620 0.2853 0.4940 0.6773 0.8257 0.9316 0.9896 0.9966 0.9523 1.0000 0.9641 0.8591 0.6923 0.4759 0.2254 -0.0413 -0.3051 -0.5469 -0.7496 -0.8984 -0.9827 -0.9966 -0.9389 -0.8138 -0.6304 -0.4017 -0.1442 0.1237 0.3827 0.6142 0.8017 0.9316 0.9947 0.9864 0.9073 0.7631 0.5641 0.3247 0.0620 1.0000 0.9523 0.8138 0.5978 0.3247 0.0207 -0.2853 -0.5641 -0.7891 -0.9389 -0.9991 -0.9641 -0.8372 -0.6304 -0.3635 -0.0620 0.2455 0.5295 0.7631 0.9239 0.9966 0.9743 0.8591 0.6619 0.4017 0.1032 -0.2052 -0.4940 -0.7357 -0.9073 1.0000 0.9389 0.7631 0.4940 0.1646 -0.1849 -0.5119 -0.7763 -0.9458 -0.9998 -0.9316 -0.7496 -0.4759 -0.1442 0.2052 0.5295 0.7891 0.9523 0.9991 0.9239 0.7357 0.4577 0.1237 -0.2254 -0.5469 -0.8017 -0.9584 -0.9981 -0.9158 -0.7216 1.0000 0.9239 0.7071 0.3827 -0.0000 -0.3827 -0.7071 -0.9239 -1.0000 -0.9239 -0.7071 -0.3827 0.0000 0.3827 0.7071 0.9239 1.0000 0.9239 0.7071 0.3827 -0.0000 -0.3827 -0.7071 -0.9239 -1.0000 -0.9239 -0.7071 -0.3827 0.0000 0.3827
B = zeros(N+1,1);
B(:,1) = (d).^3-(d)+(d).^2;
X= A\B
X = 76×1
24.0000 36.0000 14.0000 2.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000
hold on
plot(d,(d).^3-(d)+(d).^2)
fplot(subs(h,x,(x-0.5*(t0+tf))/(0.5*(tf-t0)))*X,[t0 tf])
hold off
grid on
  2 comentarios
Bruno Luong
Bruno Luong el 28 de Nov. de 2023
Movida: Bruno Luong el 28 de Nov. de 2023
That is exactky what I have suggested in my answer: use the Chebyschev nodes
t0 = 0;
tf = 4;
N = 75;
syms x
h = chebyshevT(0:N, x);
A = zeros(N+1,N+1);
for c=1:N+1
A(c,:)= vpa(subs(h,x,cos((2*c-1)/(2*(N+1))*pi)));
end
and the matrix is absolutely well conditioned for any (large) N
cond(A)
ans = 1.4142
Torsten
Torsten el 28 de Nov. de 2023
In comparison to equidistant points:
t0 = 0;
tf = 4;
N = 75;
syms x
h = chebyshevT(0:N, x);
A = zeros(N+1,N+1);
d = zeros(N+1,1);
for c=0:N
d(c+1,1) = 0.5*(t0+tf)+0.5*(tf-t0)*(-1+2*c/N);
end
for c=0:N
A(c+1,:)= vpa(subs(h,x,-1+2*c/N));
end
A
A = 76×76
1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 -1.0000 1.0000 -0.9733 0.8948 -0.7685 0.6012 -0.4018 0.1811 0.0494 -0.2772 0.4902 -0.6771 0.8278 -0.9344 0.9912 -0.9951 0.9460 -0.8463 0.7016 -0.5194 0.3095 -0.0832 -0.1477 0.3706 -0.5738 0.7464 -0.8791 0.9650 -0.9994 0.9805 -0.9094 1.0000 -0.9467 0.7924 -0.5535 0.2557 0.0695 -0.3872 0.6636 -0.8693 0.9822 -0.9903 0.8929 -0.7001 0.4327 -0.1192 -0.2071 0.5113 -0.7609 0.9294 -0.9988 0.9616 -0.8218 0.5944 -0.3036 -0.0196 0.3408 -0.6255 0.8435 -0.9716 0.9960 1.0000 -0.9200 0.6928 -0.3548 -0.0401 0.4285 -0.7483 0.9484 -0.9968 0.8857 -0.6329 0.2788 0.1199 -0.4994 0.7990 -0.9708 0.9872 -0.8457 0.5688 -0.2010 -0.1990 0.5672 -0.8446 0.9869 -0.9712 0.8002 -0.5012 0.1219 0.2768 -0.6313 1.0000 -0.8933 0.5961 -0.1717 -0.2894 0.6887 -0.9411 0.9927 -0.8325 0.4948 -0.0515 -0.4028 0.7712 -0.9750 0.9709 -0.7596 0.3863 0.0695 -0.5104 0.8424 -0.9947 0.9348 -0.6755 0.2721 0.1894 -0.6104 0.9013 -0.9998 0.8851 -0.5815 1.0000 -0.8667 0.5022 -0.0039 -0.4955 0.8628 -1.0000 0.8705 -0.5089 0.0116 0.4888 -0.8589 0.9999 -0.8743 0.5155 -0.0193 -0.4821 0.8549 -0.9997 0.8780 -0.5221 0.0270 0.4753 -0.8509 0.9995 -0.8816 0.5286 -0.0347 -0.4685 0.8468 1.0000 -0.8400 0.4112 0.1492 -0.6618 0.9627 -0.9555 0.6425 -0.1240 -0.4343 0.8535 -0.9997 0.8259 -0.3879 -0.1743 0.6807 -0.9693 0.9477 -0.6228 0.0987 0.4571 -0.8665 0.9987 -0.8113 0.3643 0.1993 -0.6991 0.9752 -0.9392 0.6027 1.0000 -0.8133 0.3230 0.2879 -0.7913 0.9993 -0.8342 0.3577 0.2524 -0.7682 0.9973 -0.8540 0.3919 0.2165 -0.7441 0.9939 -0.8726 0.4256 0.1803 -0.7189 0.9891 -0.8901 0.4587 0.1439 -0.6928 0.9830 -0.9063 0.4912 0.1073 -0.6657 1.0000 -0.7867 0.2377 0.4127 -0.8870 0.9829 -0.6594 0.0545 0.5736 -0.9569 0.9320 -0.5094 -0.1305 0.7148 -0.9941 0.8492 -0.3420 -0.3111 0.8315 -0.9971 0.7373 -0.1629 -0.4810 0.9196 -0.9659 0.6001 0.0218 -0.6344 0.9763 -0.9017 1.0000 -0.7600 0.1552 0.5241 -0.9518 0.9227 -0.4506 -0.2377 0.8119 -0.9965 0.7027 -0.0716 -0.5938 0.9742 -0.8870 0.3740 0.3185 -0.8581 0.9859 -0.6404 -0.0125 0.6594 -0.9897 0.8450 -0.2947 -0.3971 0.8983 -0.9683 0.5735 0.0965
B = zeros(N+1,1);
B(:,1) = (d).^3-(d)+(d).^2;
X= A\B
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 4.466622e-19.
X = 76×1
14.4987 29.0637 -4.5242 -4.4614 -17.1230 -5.5462 -14.8989 -4.2590 -12.0098 -2.6990
hold on
plot(d,(d).^3-(d)+(d).^2)
fplot(subs(h,x,(x-0.5*(t0+tf))/(0.5*(tf-t0)))*X,[t0 tf])
hold off
grid on

Iniciar sesión para comentar.

Más respuestas (1)

Bruno Luong
Bruno Luong el 27 de Nov. de 2023
If you select discrete points d the Chebychev nodes see definition wiki, and not uniform, it will become well posed.
  2 comentarios
Chang-Yu
Chang-Yu el 27 de Nov. de 2023
if you read the Chebfun handbook available online, there it says you can use any points on the interval. Its just that I'm not sure why it becomes singular after a certain N, but for N less than 56, it gives good values.

Iniciar sesión para comentar.

Productos


Versión

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by