Simplifying for-find loop functions to speed up processing

3 visualizaciones (últimos 30 días)
Cameron
Cameron el 26 de En. de 2024
Editada: Cameron el 26 de En. de 2024
Hi all,
A pretty basic question, but I'm trying to find a more elegant solution to search through a 750,000x5 list to remove entries from a corresponding list when more than three value in any respective row are above a threshold of 10. The long way of doing so that I have is
% mD is a 750000 x 5 matrix containing distances to the nearest 5
% neighbors of the r,c,v point (from knnsearch) in each row
for i = size(r,1):-1:1
if size(find(mD(i,:)>10),2) > 3
r(i) = [];
c(i) = [];
v(i) = [];
end
end
  4 comentarios
Torsten
Torsten el 26 de En. de 2024
Are there more than 3 values in mD row (i) above 10?
But you don't refer to row i of mD in your loop - you refer to the complete matrix mD with your find-command.
Cameron
Cameron el 26 de En. de 2024
Oops, good catch, that's my mistake, that should be mD(i,:)

Iniciar sesión para comentar.

Respuesta aceptada

Dyuman Joshi
Dyuman Joshi el 26 de En. de 2024
Editada: Dyuman Joshi el 26 de En. de 2024
I assume r, c and v have the same number of rows -
%Check which rows from the given range in mD have more than 3 values greater than 10
idx = sum(mD(1:size(r,1),:)>10, 2)>3
%perform deletion
r(idx) = [];
c(idx) = [];
v(idx) = [];
If all the variables have the same number or rows then you can remove the indices used and just use mD.

Más respuestas (1)

Cameron
Cameron el 26 de En. de 2024
Editada: Cameron el 26 de En. de 2024
I've developed a better solution to the above, which is
[~,mD] = knnsearch(rcv,rcv,'K',5);
mD_thresh = find(mD>10);
[row,~] = ind2sub(size(mD),mD_thresh);
for i = 1:size(row,1)
rcv(i,:) = [];
end
This only takes a few seconds to run, but it sacrifices testing whether more than 3 values in the row are over the 10 threshold, and just deletes any row with a single value over the limit (preferable to a 200 hour run though). I also still feel there's a way to eliminate that for loop.

Categorías

Más información sobre Matrix Indexing en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by