Code for GARCH-ARIMA

19 visualizaciones (últimos 30 días)
Seemant Tiwari
Seemant Tiwari el 24 de Mzo. de 2024
Respondida: Subhajyoti el 22 de Ag. de 2024
I have time series data,
My input series is TEMP., HUMIDITY, PRESSURE.
and MY TARGET SERIES IS AVERAGE WIND SPEED.
I am arranging my data for 1 day ahead prediction like
d= ones(1,365);
X_new=[Temp.;Humidity;Pressure];
X=mat2cell(X_new,3,24*d);
input series = X
T_new=[wind speed];
T=mat2cell(T_NEW,1,24*d);
Target series = T
I WANT TO GO NEXT STEP FOR garch-arima, I WANT CODE TO CALCULATE P,D,Q VALUE
ALSO PREDICTION CODING, for GARCH-ARIMA

Respuestas (1)

Subhajyoti
Subhajyoti el 22 de Ag. de 2024
Hi Seemant,
You can perform the GARCH-ARIMA modelling in MATLAB, using the Econometric Toolbox. The ‘arima’ function in MATLAB helps to estimate the parameters of the ARIMA model. The residuals from the ARIMA model can then be used to fit a GARCH(1,1) model with ‘garch’ function. This allows for forecasting future values and volatility of the series.
Note: Since MATLAB does not support an automatic function, you may need to try different combinations of ‘p’, ‘d’, ‘q’, using criterias like AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), Autocorrelation functions like ‘autocorr’ and ‘parcorr’, etc.
You may go through the following MathWorks documentation link to learn more about GARCH-ARIMA modelling in MATLAB.
I hope this helps.

Categorías

Más información sobre Conditional Variance Models en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by