# how to use a variable in finite field

4 visualizaciones (últimos 30 días)
ling el 6 de Abr. de 2024
Respondida: Paul el 6 de Abr. de 2024
sym a;
I want y=gf(3,8)*a, but it did not work.
##### 4 comentariosMostrar 2 comentarios más antiguosOcultar 2 comentarios más antiguos
ling el 6 de Abr. de 2024
The polynomial can be easily reconstructed using Lagrange interpolation in GF(p),where p is a primer.
Manikanta Aditya el 6 de Abr. de 2024
Yeah

Iniciar sesión para comentar.

### Respuestas (2)

John D'Errico el 6 de Abr. de 2024
Editada: John D'Errico el 6 de Abr. de 2024
g = gf(3, 8)
g = GF(2^8) array. Primitive polynomial = D^8+D^4+D^3+D^2+1 (285 decimal) Array elements = 3
whos g
Name Size Bytes Class Attributes g 1x1 92 gf
g is a gf object. But g is not compatible for multiplication by a symbolic parameter. These are two independent (and unfortunately, incompatible) toolboxes. They don't talk to or with each other. This is why when you do try to multiply g with a symbolic object, it fails.
syms a
g*a
Error using gf
Expected input x to be one of these types:

double, single, uint8, uint16, uint32, uint64, int8, int16, int32, int64

Error in gf (line 191)
validateattributes(x,{'numeric'}, {'integer', ...

Error in gf>areCompatible (line 1481)
if ~isa(b,'gf'), b=gf(b,a.m,a.prim_poly); return; end

Error in * (line 931)
[x,y]=areCompatible(x,y,'mtimes');
As the error message says, the only things you can multiply a gf object by are in that list of numeric classes. A sym is not one of the allowed classes for that operation.
You could possibly write your own set of tools that would work as you wish, essentially rewriting the gf class. Since a sym can take on any value, and it MUST be discrete for that operation to make any sense at all, it might take some work on your part to do so in a valid way.
##### 0 comentariosMostrar -2 comentarios más antiguosOcultar -2 comentarios más antiguos

Iniciar sesión para comentar.

Paul el 6 de Abr. de 2024
How about something along these lines?
y = @(a) gf(3,8)*a;
y(1)
ans = GF(2^8) array. Primitive polynomial = D^8+D^4+D^3+D^2+1 (285 decimal) Array elements = 3
y(2)
ans = GF(2^8) array. Primitive polynomial = D^8+D^4+D^3+D^2+1 (285 decimal) Array elements = 6
##### 0 comentariosMostrar -2 comentarios más antiguosOcultar -2 comentarios más antiguos

Iniciar sesión para comentar.

### Categorías

Más información sobre Error Detection and Correction en Help Center y File Exchange.

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by