Would you like guidance on how to plot the Bifurcation diagram of the van der Pol–Mathieu–Duffing oscillator against the excitation frequency Omega around principal parametric
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
EQ1=diff(x(t), t, t)+(-alpha+beta*x(t)^2)*(diff(x(t), t))+(omega[0]^2-mu*cos(2*Omega*t))*(x(t)+lambda*x(t)^3) = 0;
with :
alpha = 0.1e-1;
beta = 0.5e-1;
mu = 0.2;
lambda = 0.1;
omega[0] = 1;
a bifurcation diagram (Fig) plotted based on the direct numerical simulation of EQ1. The solution is computed starting from various basins of attraction, and the transient response is neglected by the rejection of 200 periods.
0 comentarios
Respuestas (0)
Ver también
Categorías
Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!