What are the possible reasons for data jumps in the plot?
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
KS
el 18 de Mayo de 2024
What might be the cause of such numerical instability and how can it be solved? Note: Expected plot should be as like "Green" color.
A0 = 1.5207;
A1 = 0.853721-1.816893i;
A2 = 1;
th = 0:0.5:90;
th0 = th*pi/180; % deg to rad
c0 = cos(th0);
th1 = asin((A0/A1).*sin(th0));
c1 = cos(th1);
th2 = asin((A1/A2).*sin(th1));
c2 = cos(th2);
b = 2.*pi.*50.*A1.*c1./500;
M1 = (A1.*c0 - A0.*c1)./(A1.*c0 + A0.*c1);
M2 = (A2.*c1 - A1.*c2)./(A2.*c1 + A1.*c2);
M = (M1 + (M2.*exp(-2i.*b)))./(1+(M1.*M2.*exp(-2i.*b)));
P = abs(M).^2;
plot(th, P), grid, xlabel \theta, ylabel P
3 comentarios
Image Analyst
el 18 de Mayo de 2024
Yeah @John D'Errico I think the Crystal Ball Toolbox is the wrong one here. I think you need the Mind Reading Toolbox. Unfortunately it's not released yet and only @Walter Roberson has an early alpha release of it.
Respuesta aceptada
Walter Roberson
el 19 de Mayo de 2024
Movida: Walter Roberson
el 19 de Mayo de 2024
Q = @(v) sym(v);
Pi = Q(pi);
A0 = Q(15207)/Q(10)^4;
A1 = Q(0853721)/Q(10)^6-Q(1816893)/Q(10)^6*1i;
A2 = Q(1);
th = Q(0:0.5:90);
th0 = th*Pi/180; % deg to rad
c0 = cos(th0);
th1 = asin((A0/A1).*sin(th0));
c1 = cos(th1);
th2 = asin((A1/A2).*sin(th1));
c2 = cos(th2);
b = 2.*Pi.*50.*A1.*c1./500;
M1 = (A1.*c0 - A0.*c1)./(A1.*c0 + A0.*c1);
M2 = (A2.*c1 - A1.*c2)./(A2.*c1 + A1.*c2);
M = (M1 + (M2.*exp(-2i.*b)))./(1+(M1.*M2.*exp(-2i.*b)));
P = abs(M).^2;
plot(th, P), grid, xlabel \theta, ylabel P
8 comentarios
Paul
el 21 de Mayo de 2024
Well, I guess it really wan't my solution insofar as I didn't get it to work. Maybe @Walter Roberson did something else that I missed
I see that using those single quotes defining A0 and A1 can make a small difference
Q = @(v) sym(v);
Q('1.5207') - Q(1.5207)
Q('0.853721 - 1.816893i') - Q(0.853721 - 1.816893i)
Is that the reason this solution covers the lower part of the envelope and Walter's covers the upper part? Seems very sensitive.
Another approach is to form P entirely symbolically, and the substitute the nuerical constants at the end, which sometimes takes advantage of opportunities to simplify expressions that might not otherwise be seen with a bunch of VPA numbers floating around.
Pi = Q(pi);
syms A0 A1
% A0 = Q(15207)/Q(10)^4;
% A1 = Q(0853721)/Q(10)^6 - Q(1816893)/Q(10)^6*1i; % 0.853721 - 1.816893i;
%A0 = Q('1.5207');
%A1 = Q('0.853721 - 1.816893i');
A2 = Q(1);
th = Q(0:0.5:90);
%th0 = th*Pi/180; % deg to rad
syms th0
c0 = cos(th0);
th1 = asin((A0/A1).*sin(th0));
c1 = cos(th1);
th2 = asin((A1/A2).*sin(th1));
c2 = cos(th2);
b = 2.*Pi.*50.*A1.*c1./Q(500);
M1 = (A1.*c0 - A0.*c1)./(A1.*c0 + A0.*c1);
M2 = (A2.*c1 - A1.*c2)./(A2.*c1 + A1.*c2);
M = (M1 + (M2.*exp(-2i.*b)))./(1+(M1.*M2.*exp(-2i.*b)));
M = simplify(M);
P = abs(M).^2;
P = subs(P,[A0 A1],[Q('1.5207'), Q('0.853721 - 1.816893i')]);
symvar(P)
P = subs(P,th0,th*Pi/180);
plot(th, P, 'color', '#AAE2A8', 'linewidth', 3), grid, xlabel \theta, ylabel P, grid
And now we have a different result (I don't know why the grid command doesn't work).
Más respuestas (1)
Image Analyst
el 19 de Mayo de 2024
I don't know where those equations come from. Is it some kind of chaos theory? Anyway, to plot in green like you asked, you need to use 'g-'
plot(th, P, 'g-');
11 comentarios
Ver también
Categorías
Más información sobre Detection en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!