Solving a non-linear second order ODE with Matlab

9 visualizaciones (últimos 30 días)
Whitewater
Whitewater el 29 de Abr. de 2015
Comentada: Jan el 30 de Abr. de 2015
I am brand new to Matlab, but I have to find an approximate numerical solution to the following differential equation:
d^2p/dr^2+dp/dr*1/r-2*exp(m(r))*sinh(p)=0 OR p''+p'*(1/r)-2*exp(m(r))*sinh(p)=0
I have separated it (I think correctly??) into two first order ODEs:
y0'=y1 y1'=2*exp(m(r))*sinh(y1)
Now I am confused on how to input this into Matlab. Any help is greatly appreciated!

Respuesta aceptada

Torsten
Torsten el 29 de Abr. de 2015
Use UDE45 if your problem is an initial value Problem, use bvp4c if it is a boundary value problem.
Best wishes
Torsten.
  3 comentarios
Torsten
Torsten el 30 de Abr. de 2015
And your system of equations must read
y0'=y1
y1'=-y1/r+2*exp(m(r))*sinh(y0)
Best wishes
Torsten.
Jan
Jan el 30 de Abr. de 2015
@Torsten: You know that you can edit your messages?

Iniciar sesión para comentar.

Más respuestas (2)

Pratik Bajaria
Pratik Bajaria el 29 de Abr. de 2015
Hello,
ode45 must work for you. All you have to do is make a function handle, which carries your ode function that you have split into set of first order differential equations and then use ode45 solver in MATLAB to attain a solution.
Similar to example shown on this URL: ODE45
Hope it helps!
Regards, Pratik

Bjorn Gustavsson
Bjorn Gustavsson el 29 de Abr. de 2015
Another pointer...
You have in fact not separated your DE correctly. You get y1' directly from your DE if you change dp/dr with y1.
HTH

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by