How to properly fit the data to lorentzian curve as I am getting a few errors...
23 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Yogesh
el 10 de Oct. de 2024
Respondida: Sam Chak
el 16 de Oct. de 2024
clear all
% close all
clc
tic
RMS=[];
R=[];
P_threshold=[];
L=5; %[m] Fiber length
V1=[1];
P0=4.7960;
F1=0;
count=0;
count1=0;
% for V=V1
% count1=count1+1;
% for fsine=0.50e9:150e6:1.5e9
% count=count+1;
% while 1
% P0=P0+10*F1;
%[W] Input power
%iterations=131072; %number of iterations for the calculation of the dynamics
%% general constants
n=1.45; %Index of refraction
eps0=8.854e-12; % [F/m] Vacuum permittivity
mu0 = 4*pi*1e-7;%[H/m] Vacuum permeability
c=2.9979e8; % [m/sec] Speed of light
Z0=sqrt(mu0/eps0); %[Ohm] Vacuum impedance
dt = 6e-12; dz=dt*c/n; %Spacial and Temporal step sizes.
% dz=0.05;dt=n/c*dz;
N=round(L/dz); % Fiber length discretization
z=0:dz:(dz*N-dz);
T=20*2*L*n/c; %time taken for 10 round trips
Nt=round(T/dt);
%% material characteristics
lambdaL=1.064e-6; % [m] pump wavelength
WL=2*pi*c/lambdaL; %[rad/sec] pump frequency
GAMMAb=2*pi/17.5e-9; %[1/t] phonons decay rate(zeringue)
A=7.85e-11; %[m^2] fiber's effective area
Va=5960; %[m/s] Velocity of sound
%Omega=1.01e11;%[rad/sec] acoustic frequency
Omega=2*n*Va*WL/c; %[rad/sec] (zeringue)
WS = WL-Omega;
% gammaE=0.8967; %electrostrictive coefficient
gammaE=1.95; %electrostrictive coefficient
kT=300*1.3806504e-23; %[Joule] at room temprature.
roh0=2201; % [kg/m^3] mean density for SiO2, bulk (http://www.virginiasemi.com/pdf/generalpropertiesSi62002.pdf) .
Q=2*kT*roh0*GAMMAb/(Va^2*A); %Noise std.
g0=(gammaE^2*WL^2)/n/c^3/Va/roh0/GAMMAb; %[m/W] (Jenkins)
sigma=(WL*gammaE)/2/n/roh0/c; %(derivation)
q=2*WL*n/c; %derivation
I1_0=P0/A; %[W/m^2] Pump intensity
LAMBDA=gammaE*Omega/c/Z0/2/Va^2; %derivation
kappa=g0*GAMMAb*n/2/Z0/LAMBDA; %derivation
%ten_RT_iter=20*N;%corresponds to 10 * roundtrip time
Nz=N;
%% Coefficients
G=g0*I1_0*L; %Gain factor
Gth=21; %Agrawal, pp.361
%Elt=repelem(sqrt(P0/A/2/n/c/eps0),Nz);
Elt=repelem(0,Nz);
Elt(1)=sqrt(P0*Z0/A/2/n);
%Est=repelem(sqrt(P0/A/2/n/c/eps0),Nz);
Est=repelem(0,Nz);
%%
t = (-Nt/2:1:Nt/2-1)*dt;
% nu=(-Nt/2/T/dt:1/Nt/dt:Nt/2/T/dt-1);
nu = (-Nt/2:1:Nt/2-1)*1/T;
vpi = 3;
RL=50;
V=1;
fsine=2e9;
sine = V*sin(2*pi*fsine*t);
%% White noise modulation
% randn('state', seed_phaseNoise)
% randn('state',0);
% for i=0:2
np = 22; % power of RF White noise signal in dBm
np_l = 10^(np/10)*1e-3; % power of RF White noise signal in Watts
nbw = 0.5e9; % bandiwdth in Hz of the RF WNS
rng('default');
rng(2);
n1 =randn(1, Nt); % generate a white gaussian noise in time domain which is delta correlated in time domain
% n_lpf1 = zeros(1, Nt);
% n_FT = fftshift((fft(n1-mean(n1))));
% SGF =exp(-0.5*(nu/(nbw)).^10); % Create a super-gaussian low pass filter with bandwidth = noise bandwidth
% lor=(nbw^2)./(nu.^2+nbw^2);
% x_axis=linspace(-1e9,1e9,1e4);
% s=(sinc(x_axis));
s=nbw*sinc(pi*t*nbw);
n_LPF_T=conv(n1,s,'same');
% n_LPF = ((abs(n_FT).^2).*SGF); % Filter the White gaussian PSD with the PSD of LPF
% n_LPF = ((abs(n_FT)).*SGF);
% n_nor=n_LPF./max(n_LPF);
% figure;plot(nu/1e9,n_nor);
% xlim([-13 13]);
%
% n_LPF_T = real(ifftshift(ifft(n_LPF-mean(n_LPF)))); % Filtered white gaussian noise in time domain
% n_LPF_T = (ifftshift((ifft(n_LPF-mean(n_LPF))))); % Filtered white gaussian noise in time domain
% n_LPF_T = n_LPF_T-mean(n_LPF_T);
% nn = conv(n1-mean(n1),real(ifftshift(ifft(SGF-mean(SGF)))),'same');
% n_LPF_T = nn;
n_lpf = sqrt(np_l*T*RL)*(n_LPF_T).*(1./sqrt(trapz(t, abs(n_LPF_T).^2))); %normalize the noise volatge signal
% n_lpf = sqrt(np_l*T)*(n_LPF_T).*(1./sqrt(trapz(t, abs(n_LPF_T).^2))); %normalize the noise volatge signal
% n_lpf = sqrt(np_l*T*RL)*(n_LPF).*(1./sqrt(trapz(t, abs(n_LPF).^2))); %normalize the noise volatge signal
%%
phi=n_lpf;
ES_0t=sqrt(I1_0/2/n/c/eps0)*exp((1i*phi)); % Original signal in time
% figure;plot(nu,fftshift(2*n*c*eps0*A*(abs(fft((ES_0t.^2))))));
% xlim([-13e9 13e9]);
Power=trapz(t,2*n*c*eps0*A*abs(ES_0t).^2)/T; % Area under the curve in time domain
FFt_EL0t=fftshift(abs(fft(ES_0t))); % fourier transform of the original signal
Power_FFt=T*trapz(nu,2*n*c*eps0*A*(FFt_EL0t/Nt).^2); % Area under the curve in frequency domain
figure;plot(nu,2*n*c*eps0*A*(FFt_EL0t/Nt).^2)
title('dt=',num2str(dt));
% Assuming x and y are defined as above
[xData, yData] = deal(nu, 2*n*c*eps0*A*(FFt_EL0t/Nt).^2);
[yprime, params, resnorm, residual, jacobian] = lorentzfit(xData, yData);
figure;plot(nu,yprime);
How to properly fit the curve the lorentzian curve to the data...
4 comentarios
Respuesta aceptada
Sam Chak
el 13 de Oct. de 2024
Hi @Yogesh
Here is how I fit the Lorentzian model:
RMS=[];
R=[];
P_threshold=[];
L=5; %[m] Fiber length
V1=[1];
P0=4.7960;
F1=0;
count=0;
count1=0;
%% general constants
n=1.45; %Index of refraction
eps0=8.854e-12; % [F/m] Vacuum permittivity
mu0 = 4*pi*1e-7;%[H/m] Vacuum permeability
c=2.9979e8; % [m/sec] Speed of light
Z0=sqrt(mu0/eps0); %[Ohm] Vacuum impedance
dt = 6e-12; dz=dt*c/n; %Spacial and Temporal step sizes.
N=round(L/dz); % Fiber length discretization
z=0:dz:(dz*N-dz);
T=20*2*L*n/c; %time taken for 10 round trips
Nt=round(T/dt);
%% material characteristics
lambdaL=1.064e-6; % [m] pump wavelength
WL=2*pi*c/lambdaL; %[rad/sec] pump frequency
GAMMAb=2*pi/17.5e-9; %[1/t] phonons decay rate(zeringue)
A=7.85e-11; %[m^2] fiber's effective area
Va=5960; %[m/s] Velocity of sound
Omega=2*n*Va*WL/c; %[rad/sec] (zeringue)
WS = WL-Omega;
gammaE=1.95; %electrostrictive coefficient
kT=300*1.3806504e-23; %[Joule] at room temprature.
roh0=2201; % [kg/m^3] mean density for SiO2, bulk (http://www.virginiasemi.com/pdf/generalpropertiesSi62002.pdf) .
Q=2*kT*roh0*GAMMAb/(Va^2*A); %Noise std.
g0=(gammaE^2*WL^2)/n/c^3/Va/roh0/GAMMAb; %[m/W] (Jenkins)
sigma=(WL*gammaE)/2/n/roh0/c; %(derivation)
q=2*WL*n/c; %derivation
I1_0=P0/A; %[W/m^2] Pump intensity
LAMBDA=gammaE*Omega/c/Z0/2/Va^2; %derivation
kappa=g0*GAMMAb*n/2/Z0/LAMBDA; %derivation
Nz=N;
%% Coefficients
G=g0*I1_0*L; %Gain factor
Gth=21; %Agrawal, pp.361
Elt=repelem(0,Nz);
Elt(1)=sqrt(P0*Z0/A/2/n);
Est=repelem(0,Nz);
%%
t = (-Nt/2:1:Nt/2-1)*dt;
nu = (-Nt/2:1:Nt/2-1)*1/T;
vpi = 3;
RL=50;
V=1;
fsine=2e9;
sine = V*sin(2*pi*fsine*t);
%% White noise modulation
np = 22; % power of RF White noise signal in dBm
np_l = 10^(np/10)*1e-3; % power of RF White noise signal in Watts
nbw = 0.5e9; % bandiwdth in Hz of the RF WNS
rng('default');
rng(2);
n1 = randn(1, Nt); % generate a white gaussian noise in time domain which is delta correlated in time domain
s=nbw*sinc(pi*t*nbw);
n_LPF_T=conv(n1,s,'same');
n_lpf = sqrt(np_l*T*RL)*(n_LPF_T).*(1./sqrt(trapz(t, abs(n_LPF_T).^2))); %normalize the noise volatge signal
%%
phi=n_lpf;
ES_0t=sqrt(I1_0/2/n/c/eps0)*exp((1i*phi)); % Original signal in time
Power=trapz(t,2*n*c*eps0*A*abs(ES_0t).^2)/T; % Area under the curve in time domain
FFt_EL0t=fftshift(abs(fft(ES_0t))); % fourier transform of the original signal
Power_FFt=T*trapz(nu,2*n*c*eps0*A*(FFt_EL0t/Nt).^2); % Area under the curve in frequency domain
% figure;plot(nu,2*n*c*eps0*A*(FFt_EL0t/Nt).^2)
%% ---------------------------------
%% Fitting with Lorentzian model
%% ---------------------------------
y = 2*n*c*eps0*A*(FFt_EL0t/Nt).^2;
[up, ~] = envelope(y, round(0.01*size(nu/max(nu), 2)), 'peak');
format long g
x = nu;
xm = max(nu)
% Fitting model
fo = fitoptions('Method', 'NonlinearLeastSquares',...
'Lower', [0.00008, 0.01, -0.002],...
'Upper', [0.00032, 0.02, 0 ]);
ft = fittype('a*b/((x/83332316172.4138 - c)^2 + b^2)', ...
'independent', {'x'}, ...
'coefficients', {'a', 'b', 'c'}, ...
'options', fo);
%% Fit curve to data
[yfit, gof] = fit(x', up', ft, 'StartPoint', [0.00015, 0.0075, 0.001752])
figure
plot(yfit, x, y), grid on, grid minor, xlim([-2e10, 2e10])
xlabel('\nu'), ylabel('y')
4 comentarios
Sam Chak
el 16 de Oct. de 2024
Hi @Yogesh
Because the scattered data exhibits a Gaussian distribution (up to R² = 0.9995), your specific request for a Lorentzian distribution (R² = 0.9718) is used to fit the distribution envelope of the data.
In fact, the data are distributed irregularly across the domain. For example, how would you fit this mass of data points within the red-circled area? There is no identifiable curve, other than the distribution envelope.
If this is not what you are looking for, please share your comments and provide a sketch here so that other data scientists 👨🏻💻 in the forum can assist you. 👍
Más respuestas (2)
M.
el 10 de Oct. de 2024
You can also have a look at these others functions :
https://mathworks.com/matlabcentral/fileexchange/13648-lorentzian-fit
0 comentarios
Sam Chak
el 16 de Oct. de 2024
Hi @Yogesh
Here is the fitting with a Gaussian model.
RMS=[];
R=[];
P_threshold=[];
L=5; %[m] Fiber length
V1=[1];
P0=4.7960;
F1=0;
count=0;
count1=0;
%% general constants
n=1.45; %Index of refraction
eps0=8.854e-12; % [F/m] Vacuum permittivity
mu0 = 4*pi*1e-7;%[H/m] Vacuum permeability
c=2.9979e8; % [m/sec] Speed of light
Z0=sqrt(mu0/eps0); %[Ohm] Vacuum impedance
dt = 6e-12; dz=dt*c/n; %Spacial and Temporal step sizes.
N=round(L/dz); % Fiber length discretization
z=0:dz:(dz*N-dz);
T=20*2*L*n/c; %time taken for 10 round trips
Nt=round(T/dt);
%% material characteristics
lambdaL=1.064e-6; % [m] pump wavelength
WL=2*pi*c/lambdaL; %[rad/sec] pump frequency
GAMMAb=2*pi/17.5e-9; %[1/t] phonons decay rate(zeringue)
A=7.85e-11; %[m^2] fiber's effective area
Va=5960; %[m/s] Velocity of sound
Omega=2*n*Va*WL/c; %[rad/sec] (zeringue)
WS = WL-Omega;
gammaE=1.95; %electrostrictive coefficient
kT=300*1.3806504e-23; %[Joule] at room temprature.
roh0=2201; % [kg/m^3] mean density for SiO2, bulk (http://www.virginiasemi.com/pdf/generalpropertiesSi62002.pdf) .
Q=2*kT*roh0*GAMMAb/(Va^2*A); %Noise std.
g0=(gammaE^2*WL^2)/n/c^3/Va/roh0/GAMMAb; %[m/W] (Jenkins)
sigma=(WL*gammaE)/2/n/roh0/c; %(derivation)
q=2*WL*n/c; %derivation
I1_0=P0/A; %[W/m^2] Pump intensity
LAMBDA=gammaE*Omega/c/Z0/2/Va^2; %derivation
kappa=g0*GAMMAb*n/2/Z0/LAMBDA; %derivation
Nz=N;
%% Coefficients
G=g0*I1_0*L; %Gain factor
Gth=21; %Agrawal, pp.361
Elt=repelem(0,Nz);
Elt(1)=sqrt(P0*Z0/A/2/n);
Est=repelem(0,Nz);
%%
t = (-Nt/2:1:Nt/2-1)*dt;
nu = (-Nt/2:1:Nt/2-1)*1/T;
vpi = 3;
RL=50;
V=1;
fsine=2e9;
sine = V*sin(2*pi*fsine*t);
%% White noise modulation
np = 22; % power of RF White noise signal in dBm
np_l = 10^(np/10)*1e-3; % power of RF White noise signal in Watts
nbw = 0.5e9; % bandiwdth in Hz of the RF WNS
rng('default');
rng(2);
n1 = randn(1, Nt); % generate a white gaussian noise in time domain which is delta correlated in time domain
s=nbw*sinc(pi*t*nbw);
n_LPF_T=conv(n1,s,'same');
n_lpf = sqrt(np_l*T*RL)*(n_LPF_T).*(1./sqrt(trapz(t, abs(n_LPF_T).^2))); %normalize the noise volatge signal
%%
phi=n_lpf;
ES_0t=sqrt(I1_0/2/n/c/eps0)*exp((1i*phi)); % Original signal in time
Power=trapz(t,2*n*c*eps0*A*abs(ES_0t).^2)/T; % Area under the curve in time domain
FFt_EL0t=fftshift(abs(fft(ES_0t))); % fourier transform of the original signal
Power_FFt=T*trapz(nu,2*n*c*eps0*A*(FFt_EL0t/Nt).^2); % Area under the curve in frequency domain
% figure;plot(nu,2*n*c*eps0*A*(FFt_EL0t/Nt).^2)
%% ---------------------------------
%% Fitting with Gaussian model
%% ---------------------------------
y = 2*n*c*eps0*A*(FFt_EL0t/Nt).^2;
[up, ~] = envelope(y, round(0.01*size(nu/max(nu), 2)), 'peak');
format long g
x = nu;
xm = max(nu)
% Fitting model
fo = fitoptions('Method', 'NonlinearLeastSquares',...
'Lower', [0.01, 0.01, -0.002],...
'Upper', [0.02, 0.02, 0 ]);
ft = fittype('a*exp(- 1/2*((x/83332316172.4138 - c)/b)^2)', ...
'independent', {'x'}, ...
'coefficients', {'a', 'b', 'c'}, ...
'options', fo);
%% Fit curve to data
[yfit, gof] = fit(x', up', ft, 'StartPoint', [0.015, 0.015, -0.001])
figure
plot(yfit, x, y), grid on, grid minor, xlim([-1e10, 1e10])
title('Fitting Point Cloud distribution with Gaussian model')
xlabel('\nu'), ylabel('y')
0 comentarios
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!