Representation of this vector T_d1 and Td_2 in MATLAB

6 visualizaciones (últimos 30 días)
Rohitashya
Rohitashya el 15 de Oct. de 2024
Comentada: Rohitashya el 21 de Oct. de 2024
For this information I tried to write the Td_2 in MATLAB
% Function to compute Stirling numbers of the first kind
function S = stirling1(n, k)
if n == k
S = 1;
elseif k == 0
S = 0;
elseif n == 0
S = 0;
else
S = stirling1(n-1, k-1) - (n-1) * stirling1(n-1, k);
end
end
% Pre-allocate the matrix T_d^2
T_d2 = zeros(M, M);
% Fill the matrix according to the Stirling number formula
for i = 1:M
for j = 1:i
T_d2(i, j) = stirling1(i, j); % Stirling number of the first kind
end
end
disp('Matrix T_d^2:');
disp(T_d2);
The results show Matrix T_d^2:
1 0 0 0
-1 1 0 0
2 -3 1 0
-6 11 -6 1
Td_1 as % Pre-allocate the matrix T_d^1
T_d1 = zeros(M, M);
% Fill the matrix according to the formula
for i = 1:M
for j = 1:i % j ranges from 1 to i
T_d1(i, j) = nchoosek(i-1, j-1) * ((-M + 1) / 2)^(i-j);
end
end
disp('Matrix T_d^1:');
disp(T_d1);
The results are Matrix T_d^1:
1.0000 0 0 0
-1.5000 1.0000 0 0
2.2500 -3.0000 1.0000 0
-3.3750 6.7500 -4.5000 1.0000
Is it a correct method of calculation ? Please could you give suggestions or comments ?

Respuesta aceptada

Ashok
Ashok el 21 de Oct. de 2024
The provided code indeed calculates the and matrices based on the given formula. Here's an alternative approach that doesn't require declaring 'stirling1' as a separate function.
function Td1 = compute_Td1(M)
% Create a matrix of binomial coefficients
[I, J] = ndgrid(1:M, 1:M);
binomials = zeros(M, M);
for i = 1:M
binomials(i, 1:i) = arrayfun(@(ii, jj) nchoosek(ii-1, jj-1), I(i, 1:i), J(i, 1:i));
end
% Create a matrix for powers
powers = ((- (M - 1) / 2) .^ (I - J)) .* (J <= I);
% Element-wise multiplication to get Td1
Td1 = binomials .* powers;
end
function Td2 = compute_Td2(M)
% Initialize Td2 with identity
Td2 = eye(M+1);
for n = 2:M+1
for k = 2:n-1
Td2(n, k) = Td2(n-1, k-1) - (n-2) * Td2(n-1, k);
end
end
Td2 = Td2(2:M+1, 2:M+1);
end
% Example usage:
Td1 = compute_Td1(M);
disp('T_d^1:');
disp(Td1);
Td2 = compute_Td2(M);
disp('T_d^2:');
disp(Td2);
Additionally, for implementing cross products, consider using MATLAB's 'cross' function instead of nested for loops. You can find the relevant documentation here:
I believe this will be of use!

Más respuestas (0)

Categorías

Más información sobre Acoustics, Noise and Vibration en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by