Size of predictions and targets must match.
11 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Bahadir
el 24 de Nov. de 2025
Comentada: Chuguang Pan
el 25 de Nov. de 2025
Dear sir,
I make a LSTM regression. LSTM will take 50x28 input and predict 1x2 output.
50 input sample with 28 channel will equal to 1 output samples with 2 channel.
My dataset is OK. I want this dataset.
XTrain= 838985x1 cell inside 50x28 double

TTrain=838985x1 cell inside 1x2 double

layers = [
sequenceInputLayer(28)
bilstmLayer(200,'OutputMode','sequence')
dropoutLayer(0.2)
bilstmLayer(200,'OutputMode','sequence')
dropoutLayer(0.2)
fullyConnectedLayer(2)];
net = trainnet(XTrain,TTrain,layers,"mse",options);
How can ı solve this unshape station?
Error using trainnet (line 46)
Size of predictions and targets must match.
Size of predictions:
2(C) × 128(B) × 50(T)
Size of targets:
2(C) × 128(B) × 1(T)
0 comentarios
Respuesta aceptada
Chuguang Pan
el 24 de Nov. de 2025
Movida: Matt J
el 24 de Nov. de 2025
@Bahadir. As indicated by the error message, the size of prediction and the target must be equal. I think you should reduce the T dimension before predicting, you can use bilstmLayer with "last" Output mode to reduce T dimension.
2 comentarios
Chuguang Pan
el 25 de Nov. de 2025
@Bahadir. For the one time step prediction problem, you can preprocess the input multivariable time series as
tensor and the output as
tensor, where every observation is the one time step target.
tensor, where every observation is the one time step target.Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!