How to find the optimal p for AR model

4 visualizaciones (últimos 30 días)
xiaoli su
xiaoli su el 23 de Jul. de 2015
Comentada: xiaoli su el 24 de Jul. de 2015
Hi everyone,
I now have a nitrate time series and I have decomposed it with an additive model, which is Y=T+S+R. I hope to find the best-fit AR(p) model for my residuals. I read from some papers that Mann-Wald process could be used. It would be really great if someone could provide a code on how to find the p. Below is my nitrate residuals. Thanks!
0.160157983184890 2.17307720054057 1.52955989565626 1.45006890417194 2.45078566444762 1.82790551974331 2.69034445775899 4.42816184597468 2.34540928553036 2.68279049780604 1.62871903928173 0.508296837837410 -1.62288362596995 1.00584965715162 -0.543055573966803 0.444003915314771 1.52210606035635 2.59531316141792 2.23891089519949 3.05301642518107 3.10129331550264 0.429833321544216 -0.483079342214210 0.722657253107364 -2.30055733593411 -1.25196701104664 -1.31637009539918 -0.531355848351714 0.193111664455751 1.34662635028322 1.17338288183068 1.38414720557814 0.521082891665609 -0.939218305526926 0.469027827480539 3.37592322056800 2.33001561329242 3.25061121894578 1.20307030535913 1.16590066017249 1.22124884474584 0.251845091339198 1.67106041465255 1.28918353716591 1.18477801701926 0.0406356165926184 -0.0849594546340268 -1.09190526778067 -2.24995407529036 -2.44871656287112 -1.47128179369187 -0.438992641112626 0.582514336226620 1.16346937958587 1.01304349966511 0.941625416944357 1.37737869456360 -0.790604913097152 -0.566041187557907 -0.880828206938661 -2.85271821768246 -2.62150501849733 -2.32172834455219 -1.72158039620705 -1.13491462210192 2.23399921602322 -0.185267868131646 0.230972844913491 0.841384917298627 -1.66993989159624 -2.26121737129110 -2.65584559490597 -3.72157680988388 -3.18420481493285 -1.57576934422182 -1.59696260111080 -0.875138030239769 -1.32156539734874 -0.119673685737717 0.327725823073310 0.0342966932243356 -0.746369320904637 -2.41098800583361 -3.41195743268258 -3.19052985189460 -3.45549906417769 -2.47420479670077 -2.27343925682385 -1.84095589118694 -0.720724461530018 -0.385173953153102 -0.0366156505761843 -0.184385984659268 -1.31839320302235 -0.627853090185433 -1.23616372126852 0.594922655285354 0.629612240768162 0.680365300010968 0.0264896376537763 -1.57986819994342 -1.29947797852061 -0.541768674377802 -0.0945515750349948 0.341836886647812 -0.419011535949380 -0.965312627346572 -1.65496446266376 -2.05971929034400 -1.59887091009531 -2.04045905108661 -1.84717592067791 -0.914874961509212 -0.226825944320514 1.11411769358818 0.0414180536968818 0.403965307145579 -1.19572431668572 -1.37686661331702 -2.79685965286833 -2.17045568678267 -2.08344851076809 -1.18137785499350 0.230564069181090 0.881023826115679 0.0227316420702668 -0.530741462255145 -0.357706770380556 0.0349992798340315 -0.698531551231380 -1.05651505209679 -4.02404929588220 -2.89478653203066 -2.49912055925018 -2.47739111070970 -1.41929038776922 -0.575671836068746 -0.598305226348267 0.251380466092211 1.14757395173269 -0.00256120028683160 -1.54793323558635 -1.95875793968587 -4.12723338970539 -2.33071182708796 -1.53588705954159 -0.795498819235224 -0.171239299528854 1.98353804593751 0.109563456423885 -0.767092058369746 0.577760226036623 0.131283870782992 -0.430929367750639 -0.290095279084269 0.705388069662101 1.21076842304542 -0.961248012642317 -1.03140097157006 -0.115282656097797 -1.94334651886554 -0.838662314613278 -1.00965903164102 -0.513147954468758 -0.0424655139564996 -1.40851995472424 -1.22502706929198 0.586615073220280 2.16315422436950 1.62729658344764 0.212002419285794 1.55057952852394 -0.763825535477906 0.377017466540245 0.0813795432783944 0.639249419216544 -0.193509344505306 2.11279500549285 2.01474669169100 -1.00665237203085 0.375245576884251 0.344746729728291 0.435311359332332 -0.988452728663628 0.0468009991004125 0.0158027948844535 1.18002366838849 0.519252337092534 0.898752374136574 0.100515518900615 -0.281874001135344 0.713085731908695 -1.09165752441031 -2.17499757480038 -2.10387414943045 -1.77597944666052 -0.335066915130585 -0.670506325580654 0.393873344689276 -0.213639190840792 -0.828080362030862 -1.39885841850093 -1.82138914777100 -2.41957061596107 1.72474492348582 0.637563669861638 0.321345894997459 -0.755900606466719 -2.14292928117090 -2.80640989885508 -1.73387142881925 -1.20402517258343 -0.536207547007612 -1.73462680671179 -2.56629873921597 -3.79432141264014 -2.94124707742737 -1.04946953428566 -0.898328514383944 0.774783777917767 3.60581389697948 2.61549207606119 2.76878934386290 -0.744105601135384 0.0338708192063266 1.60881035226804 1.63889721452975 1.09333333887146 1.23066646885013 0.306902806757731 0.514602623425335 0.356773715492936 -1.77063737567946 -1.12520039783186 -2.26704433826426 -2.17208048749665 -0.219945266389052 0.984453062438551 4.21439872146615 10.6309936395738 9.58348556531831 4.84058069899181 3.25023931042530 2.76976919525879 1.30981690685228 1.62141267746578 1.80372752879927 1.38985018133276 2.03514418820625 1.38900131579975 -0.0668942244067584 0.495559489466734 -0.124789789022819 0.229564143416563 0.229581547615947 0.273870225215330 1.82887673657471 1.85863130295410 1.18370495705348 0.587686401352863 1.44833920699225 0.397255127351630 0.528218379911014 3.31003088855040 3.85584040582673 3.65225313103201 2.73822933399728 1.88907681036256 1.00744211748783 2.54305547663310 1.16348792049838 0.774428165563654 -0.157960233031073 -0.634385520905799 -0.874163468580525 -0.621292162175251 -0.0626238501330239 0.257947670838141 -0.280817329430694 -0.193811057299531 -0.206486957408366 0.0863852015027977 -0.881223561866039 -0.774924524034874 0.828845879136291 1.08787938602746 -1.24653976888138 -1.39630966371022 -2.43148255990210 -1.19245223716504 -0.186158441667991 2.20900662222907 1.73238951688612 0.953620476563174 2.39637050596023 1.36212834255728 1.19055753649434 1.99474984415139 0.524489482008449 -0.385121619054498 0.361164285519512 -0.610946599977543 -0.0421940147145987 -0.0471701500516536 -0.456328459628708 -0.816938703185762 -0.231329876022817 0.558086756340128 0.347174743043072 4.07052584846602 2.45642428408896 2.17897197679191 0.563416677131806 1.06146458540064 -0.415624030570522 -0.318141367141684 -0.259940878952849 1.61980766225599 0.778375292184820 -0.00854928268634358 0.530197499782492 -0.00279259602867288 0.940064630360165 3.74897112182900 3.04957461793479 2.30278132196951 1.40255150376424 1.38919295895897 0.0974522399136985 0.133559588888423 0.612486007583148 -1.31357977552212 0.332425808712600 -0.741205491332674 1.26801053182205 2.64687581605678 1.38863810792846 1.73500360772908 0.906932585289691 0.0380328362503098 0.0930509169709258 0.471917055711543 0.832802270172159 0.327095283832775 0.200359660833392 -0.307012841445991 -0.207738021525375 2.98568605947524 2.52960714711281 2.30613144267932 1.43821921600583 4.66417826273233 2.41865513621884 1.17408007572535 -0.968475910048146 -1.06672410162164 0.435699070144867 -0.679114644368625 1.52121897631788 1.66340185208439 1.10648173548785 0.756164826820247 1.72841139591265 2.79052923840504 1.06346490465744 -0.0409513640701629 -0.386648549077766 -1.06953794088537 -0.520855978352972 1.45028910589943 1.25068152235183 -0.195976806115778 -1.33073812694643 -0.110896239848139 0.792509125010148 0.900885761268438 0.0725802262867249 -0.498077241674988 -1.13091563691670 -1.05444623295841 -0.307505475660124 -1.27820159064184 -1.73985038542355 -0.0304499151252560 -5.12133439419001 -4.62070827832584 -3.96203870770166 -2.67526216267748 -1.57287548189330 -2.88789757708912 -1.62167717956495 -2.11834897984077 -1.28414942177659 -1.70968674699241 4.62332326199177 -1.62001747194405 1.76553879575708 0.946698274387148 0.0514212307772164 -1.44598453843271 -3.22087248488264 -2.62551236631258 -1.79483316802251 -2.78364617353244 -3.25328781670237 -2.00766635015230 -3.04849754640223 -4.02067948957216 2.85603558089486 3.67835385529082 3.55423560744678 -0.964816690997261 -0.0707405176813029 -1.95922160334534 -1.69738360428939 -1.88503782003342 -1.86352066543747 -0.426740398121506 -0.926412799605548 -1.16743594600959 4.46043791522332 0.513914985385175 -0.609044463692976 0.635867352628874 -1.54670300128928 -1.04902528518743 -1.43602850036557 0.0674760866562765 0.630152029018126 -0.636908900900024 0.0995774943818254 0.0697131407436751 -1.49125420025752 0.793381664670220 0.451581008357960 -3.26734837355430 0.556240070293440 0.611776578161180 -0.970767841251080 0.0538955415366611 -0.587269719335599 -0.663171856487859 0.0461733355598827 -1.80923222131238 -2.01404076954768 0.436753893145947 -0.153887963400423 -0.146658553546792 -0.966911317933161 -0.326916009299530 -0.841601633945901 -1.88577945139227 -0.590785914498639 1.08947074111499 1.08327472192862 -1.99427203217775 0.702078213352839 0.161031670812359 -0.305451395968119 -0.0870631873485989 -1.05615714796908 -0.165003055569557 -0.773529877450035 -2.27154890113051 -1.13039657147099 -0.903981119091473 -1.86901833951195 1.79459369914757 2.51410274444404 1.16521499766946 0.926890728654869 0.286437729040281 -0.598197438814308 -2.16248454264890 -0.796552569763486 -1.39341280067807 -1.80610167425266 -2.10682742810725 -2.98740584776184 -3.87424976333643 0.251032824725939 -0.286696126282760 2.52313840046854 -0.832855802380152 -1.04293216946885 -1.20446048253755 -1.24396971188625 -2.56137115303494 -2.79960122284364 -2.93416817993234 -2.09188780882104 4.93404181737026 6.02886845419852 1.95429829895571 0.760291621472907 0.411885251390097 0.264538642067290 0.607469126764484 0.604118691181675 -0.442123951201132 -0.900795234243940 4.35409660743325 4.04753577531044 0.174624200267637 -0.994390369138215 0.962198273384867 -0.532649610332050 0.390373785351033 -0.889085000205883 0.621704283257200 -0.382187354559718 -0.182271203176635 -0.624783684453552 0.571266947989530 0.0875649126326145 -1.81088786764430 0.836256360715734 0.439003797004706 0.755314711053681 0.484496895502654 -0.453803086288373 0.753144987940602 -0.524587859110426 -1.03181290496145 -0.819866594472480 -0.122657165263506 0.528099596145467 -1.38249438836556 -0.704191361239631 -0.470285127184769 -2.24286389536990 -0.0924744411550401 0.920384369819825 -0.961508756185312 -0.978082804470449 -0.264149055555584 0.188956052699280 -1.13267572632586 -0.310760169150993 -1.35019535689613 -1.99073353500431 -2.53566850718355 -1.48704000260280 -0.860540224622045 -0.981522618881289 -0.0122569541205351 -0.437672201639781 2.75959194904097 -0.798315758938272 5.35121126480248 3.64428561574324 0.276009223763989 -4.23121581557830 -0.717146338991657 -0.867359035645010 -0.709700457898366 -0.819524061391721 -1.57909959586508 -1.10335605361843 1.53743933782821 -1.46168201238514 -2.03099619687850 -2.43676305417185 4.07611935261479 -2.98386917296161 -2.14885749960907 1.67622748050346 0.415044854015996 2.85138005228853 -0.722036694418932 0.0648656475936020 -1.11772421519386 1.62089454035867 -1.06929811336879 1.87109382810374 0.750135030656278 0.113073237845765 -1.77166313103581 1.54871954584262 -0.484093911878955 1.32618970415947 0.273931763217895 2.47184567199632 0.745561821974748 -0.436697879706828 1.03975741733160 0.582856264570025 0.328056260888449 1.15215326084383 1.16185347172814 1.68511716037246 0.213760721416778 -0.0100950887789047 0.728805765045413 -0.746974307410273 3.81753391533404 0.311652508418360 2.93081470622268 0.713524247226995 2.98988303431131

Respuesta aceptada

Roger Wohlwend
Roger Wohlwend el 24 de Jul. de 2015
You could use the Akaike or the Bayesian Information criterion (Matlab function aicbic). Also consult the page "Choosing ARMA lags using BIC" in the Matlab documentation.
A less sophisticated way is to try different values for p, estimate the model in each case and choose the p where the model's residual are free of autocorrelation.
The Matlab function parcorr suggests that the optimal value for p is 1 in your case. Indeed, for p = 1 the model seem to be quite good. The residuals are free of autocorrelation, the R-square is 0.35 and the coefficient is significant.
  1 comentario
xiaoli su
xiaoli su el 24 de Jul. de 2015
Thanks Roger, I have tried the BIC before and it showed the best model ARMA model. However, when I was using autocorr, I got a ACF graph which has a quite significant value at lag 12. I wonder if this is related to the p of AR model or what it indicates.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Conditional Mean Models en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by