Change input at each time step of the ODE solver 'ode45'
17 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I am not sure how to change an input parameter 'β' at each time step. My code is below - which gives me an error. Can anybody help please!
t = [7 14 21 28 35 42 49 56 63 70 77 84];
for i=1:12;
beta(i) = 0.43e-08 + (4.28e-08 - 0.43e-08)*exp(-0.20*t(i));
end
f = @(t,x) [3494-0.054*x(1)-beta*x(1)*x(3); beta*x(1)*x(3) - 0.41*x(2); ...
50000*x(2) - 23*x(3)];
[t,xa1] = ode45(f,t,[64700 0 0.0033],beta);
1 comentario
Jan
el 5 de Dic. de 2015
And the error message is:
Error using vertcat
Dimensions of matrices being concatenated are not consistent.
Error in @(t,x)[3494-0.054*x(1)-beta*x(1)*x(3);beta*x(1)*x(3)-0.41*x(2);50000*x(2)-23*x(3)]
Respuesta aceptada
Jan
el 6 de Dic. de 2015
Please consider, that Matlab's ODE integrators cannot handle non-smooth functions sufficiently. See http://www.mathworks.com/matlabcentral/answers/59582#answer_72047 .
The only reliable method to run the integration is a loop over the time intervals:
function yourIntegration
tResult = [];
xResult = [];
tStep = [7 14 21 28 35 42 49 56 63 70 77 84];
x0 = [64700 0 0.0033];
for index = 2:numel(tStep)
% Integrate:
beta = 0.43e-08 + (4.28e-08 - 0.43e-08) * exp(-0.20*t(index - 1))
af = @(t,x) f(t, x, beta);
t = tStep(index-1:index);
[t, x] = ode45(af, t, x0);
% Collect the results:
tResult = cat(1, tResult, t);
xResult = cat(1, xResult, x);
% Final value of x is initial value for next step:
x0 = x(end, :);
end
function dx = f(t,x, beta)
dx = [3494-0.054*x(1)-beta*x(1)*x(3); ...
beta*x(1)*x(3) - 0.41*x(2); ...
50000*x(2) - 23*x(3)];
7 comentarios
Saiprasad Gore
el 5 de Mayo de 2017
Thanks a lot, I had a similar problem. I wanted to switch the eqn depending on condition after every step. I hope this will work in my case too. Can you tell me how to give ode45 just 1 step without intermediate adaptive steps?
Más respuestas (1)
Walter Roberson
el 6 de Dic. de 2015
f = @(T,x) [3494-0.054*x(1)-interp1(t,beta,T,'linear','extrap')*x(1)*x(3); interp1(t,beta,T,'linear','extrap')*x(1)*x(3) - 0.41*x(2); ...
50000*x(2) - 23*x(3)];
2 comentarios
sam
el 15 de Jun. de 2016
Editada: sam
el 16 de Jun. de 2016
@Walter Roberson
Hi Walter,
Why do we have to do interpolation if we already know the exact expression of the variables? Couldnt we just input the exact expression of the variables into the Matlab ode45 solver? If we could, could you kindly tell me how to do this? Thanks.
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!