how can I show the denoised image after applying pca to a noisy image.

2 visualizaciones (últimos 30 días)
im=imread('cameraman.tif'); im1=imresize(im,[50,50]); im=double(im1); figure(1);imshow(im,[]); sig=10; noi=sig*randn(size(im)); data=im+noi; figure(2);imshow(data,[]);
[m,n]=size(data);
mn = mean(data,2); data = data-repmat(mn,1,n); covari=data*data'/n-1; [PC,V] = eig(covari); diav = diag(V); [junk, rindices] = sort(-1*diav); V = diav(rindices); PC = PC(:,rindices);
  3 comentarios
Shaveta Arora
Shaveta Arora el 31 de En. de 2016
im=imread('cameraman.tif');
im1=imresize(im,[50,50]);
im=double(im1);
figure(1);imshow(im,[]);
sig=10;
noi=sig*randn(size(im));
data=im+noi; %noised image
figure(2);
imshow(data,[]);
[m,n]=size(data);
mn = mean(data,2);
data = data-repmat(mn,1,n);
covari=data*data'/n-1;
[PC,V] = eig(covari);
diav = diag(V);
[junk, rindices] = sort(-1*diav);
V = diav(rindices);
PC = PC(:,rindices);
Shaveta Arora
Shaveta Arora el 31 de En. de 2016
PC represents principal components of noisy image i.e data. Now pls help me how to get the image from these PCs.

Iniciar sesión para comentar.

Respuestas (1)

Image Analyst
Image Analyst el 31 de En. de 2016
figure;
imshow(PC, [], 'InitialMagnification', 1600);
title('PC Image', 'FontSize', 20);

Categorías

Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by