RBF newrb, array exceeds maximum size

1 visualización (últimos 30 días)
EdWood
EdWood el 25 de Ag. de 2016
Comentada: SHAUIFENG JIANG el 6 de Dic. de 2018
My input dataset is 13x778162 large. I tried to create RBF network by newrb, but I got error: Error using zeros Requested 778162x778162 (4511.6GB) array exceeds maximum array size preference. My RBF network:
eg = 0.1; % sum-squared error goal
sc = 0.2; % spread constant
mn = 10; % maximum number of neurons
df = 1; % number of neurons to add between displays
net = newrb(input,target,eg,sc,mn);
Using all 778162 neurons is too much, I understand. But I use function newrb, so I thought, that I can set maximum number of neurons by parametr mn, which is set to 10 neurons, but matlab still uses too much space.
  1 comentario
SHAUIFENG JIANG
SHAUIFENG JIANG el 6 de Dic. de 2018
Hey Edwood,
I am facinig the same problem and I have a same consideration just as you did. I can not find the link of the answer of Greg. Would you please help me a little bit?

Iniciar sesión para comentar.

Respuesta aceptada

Greg Heath
Greg Heath el 26 de Ag. de 2016
Editada: Greg Heath el 26 de Ag. de 2016
1. See my NEWRB posts in the NEWSGROUP and ANSWERS
NEWSGROUP hits ANSWERS hits
greg NEWRB 149 63
2. Reverse chronological order is probably the most efficient
Your data appears to be 13 dimensional. Typically, 30 random points per dimension is sufficient for a good training set.
You don't say whether this is classification or regression. The procedures will be different.
I would start with 10 random sets of ~400 or 500 and design 10 nets. Then run the rest of the data through the nets, saving all misclassified vectors to be used as training vectors for new clusters.
Hope this helps.
Thank you for formally accepting my answer
Greg
  1 comentario
EdWood
EdWood el 26 de Ag. de 2016
I use it for regression. Choosing all misclassified vectors could actually lead to overfitting right?

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by