It's right the next code

1 visualización (últimos 30 días)
Julian Oviedo
Julian Oviedo el 15 de Nov. de 2016
Editada: David Goodmanson el 16 de Nov. de 2016
Hello I'm trying to grahp the frecuency spectrum of 3 diffente signal. What do you think about the next code? It's right that the first armonic of the last signal has a bigger amplitude than the signal?
if true
a=[1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 ];
b=[ 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1];
c=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1];
n=1:1:101;
n2=1:1:118;
f=0:1:50;
f2=0:1:59;
x=fft(a);
P2 = abs(x/(length(a)));
P1 = P2(1:(length(a))/2+1);
P1(2:end-1) = 2*P1(2:end-1);
x2=fft(b);
P4 = abs(x2/(length(b)));
P3 = P4(1:(length(b))/2+1);
P3(2:end-1) = 2*P3(2:end-1);
x3=fft(c);
P6 = abs(x3/(length(c)));
P5 = P6(1:(length(c))/2+1);
P5(2:end-1) = 2*P5(2:end-1);
subplot(6,1,1)
plot(n,a);
subplot(6,1,2)
plot(f,P1);
subplot(6,1,3)
plot(n2, b);
subplot(6,1,4)
plot(f2,P3);
subplot(6,1,5)
plot(n2,c)
subplot(6,1,6)
plot(f2,abs(P5));
end

Respuestas (1)

David Goodmanson
David Goodmanson el 16 de Nov. de 2016
Editada: David Goodmanson el 16 de Nov. de 2016
Hi Julian,
Good plots. Taking the fft of the square wave in c as an example, abs(amplitude) of the first harmonic should be close to 2/pi as you are getting. For the first harmonic, if you combine the positive and negative frequency fft components to get a sine wave, abs(amplitude) of that sine wave is close to 4/pi. So yes, the amplitude is larger than the height of the square wave.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by