ANN for constraint optimization problem
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
hello,
How do i modify my ANN algorithm, by incorporating some constraints to perfom my obtained result. the matlab code used is generated from Neural Network Toolbox.
function [Y,Xf,Af] = ANN_Function(X)
% ===== NEURAL NETWORK CONSTANTS =====
% Input 1
x1_step1_xoffset = [-0.964339227389144;-0.906927494859787;-0.9643288955237];
x1_step1_gain = [1.03826501814344;1.06861700687107;1.27340625419393];
x1_step1_ymin = -1;
% Layer 1
b1 = [-1.3371193654695128217;-3.7243723447930885406;0.59020209217794505907;-0.26942 281438778381553;-0.084790990077469749475;-0.287833517416886564;-0.6199588700217847359;0.87036361559242081398;1.1136596091577191103;3.5728692098803582766];
IW1_1 = [0.62172489473929637427 -1.1539538428995010921 0.40749280432490736503;0.33504097052172682192 2.2754223181903578954 -2.0670552187061321803;-0.97421719994837163714 0.16930737512492399777 0.95638889040809083042;3.453458645614659428 2.4120651149524281465 3.9342055592145062093;2.9998512477370034013 2.2723487424133810286 3.3571622229587347874;-1.6838243946405258011 -2.3995748128279066336 0.36244936598086713309;-3.1423700210823852785 1.3845185332230820485 2.4609517018642876884;-0.39703700607817143942 2.4912130193995269956 -0.16941481846512243536;1.406655675671569572 0.92534256006865256428 0.64325984129225455277;1.5085377777493140794 1.4551527878904193525 -1.3090133612083598713];
% Layer 2
b2 = [-0.28647967632293369622;-0.77689684809120063136;0.23567045137827014045;-0.50614562961496167848;0.17775471570313430836;0.39409286123122444501;-0.23743319675300361693];
LW2_1 = [-1.2595809845665446591 0.52253536564831837286 1.6575450213582203496 1.4444644615739332671 -0.79927746466752380705 -0.49440949393277561219 -1.0291039534117272236 -0.10205229528755178914 -1.783179386992490123 0.012007511957539542674;-1.8160587258194498261 0.16525212307258660416 -0.35634974797682900105 0.61911944611294977836 -0.55104180525241264199 0.36270218166368617396 0.70227078264624087645 -0.69192422904692441055 0.63741286998972901401 0.078380036138073788665;-0.39987089599785630156 0.0015263660888982231219 -0.32703999255710186622 -1.0870691355791675115 0.68183572942635206626 0.20086063975571505358 0.53707692508704663048 -0.043958739282595582498 0.30170293659756891591 -0.40387165805595148793;-0.42538078713443683299 -0.41243046298959784579 0.09360967585146644232 -0.54902810742656438237 0.27858672713463300541 0.13466521369669071095 -0.31684402239022979586 -0.016110146899087046668 0.18209067234932024837 -0.38144681930811946691;0.78489623544097297803 0.064197561813166229006 -0.14703146723552590336 0.045763727795912277629 -0.044493781097574965078 0.023102496123388799321 0.19498160438730580135 0.42399577006788119471 0.068627392557574939946 0.2774573470874529546;0.28300904777281810087 -0.040045961378933660202 -0.048322484065649526364 0.23633721304470370339 -0.28761021912207535012 0.22386822762508534757 -0.095795332741767574847 0.31901549272383256106 0.17453188621906071121 -0.40095786179528114523;0.2537157491011907684 -0.037837226082635302959 -0.044856312727524147443 0.24018253583883578117 -0.28974054247799801987 0.23561178051146219881 -0.095989508380685484301 0.30576014862164185848 0.18195538033206490325 0.22157365239611195862];
% Output 1
y1_step1_ymin = -1;
y1_step1_gain = [1.21212121212121;1.53846153846154;0.8;3.33333333333333;1.66666666666667;2;2];
y1_step1_xoffset = [-0.785398163397448;-0.523598775598299;-0.261799387799149;-0.174532925199433;-0.349065850398866;-0.523598775598299;-0.523598775598299];
% ===== SIMULATION ========
% Format Input Arguments
isCellX = iscell(X);
if ~isCellX, X = {X}; end;
% Dimensions
TS = size(X,2); % timesteps
if ~isempty(X)
Q = size(X{1},1); % samples/series
else
Q = 0;
end
% Allocate Outputs
Y = cell(1,TS);
% Time loop
for ts=1:TS
% Input 1
X{1,ts} = X{1,ts}';
Xp1 =
mapminmax_apply(X{1,ts},x1_step1_gain,x1_step1_xoffset,x1_step1_ymin);
% Layer 1
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1);
% Layer 2
a2 = repmat(b2,1,Q) + LW2_1*a1;
% Output 1
Y{1,ts} =
mapminmax_reverse(a2,y1_step1_gain,y1_step1_xoffset,y1_step1_ymin);
Y{1,ts} = Y{1,ts}';
end
% Final Delay States Xf = cell(1,0); Af = cell(2,0);
% Format Output Arguments if ~isCellX, Y = cell2mat(Y); end end
% ===== MODULE FUNCTIONS ========
% Map Minimum and Maximum Input Processing Function function y = mapminmax_apply(x,settings_gain,settings_xoffset,settings_ymin) y = bsxfun(@minus,x,settings_xoffset); y = bsxfun(@times,y,settings_gain); y = bsxfun(@plus,y,settings_ymin); end
% Sigmoid Symmetric Transfer Function function a = tansig_apply(n) a = 2 ./ (1 + exp(-2*n)) - 1; end
% Map Minimum and Maximum Output Reverse-Processing Function function x = mapminmax_reverse(y,settings_gain,settings_xoffset,settings_ymin) x = bsxfun(@minus,y,settings_ymin); x = bsxfun(@rdivide,x,settings_gain); x = bsxfun(@plus,x,settings_xoffset); end
2 comentarios
Respuestas (0)
Ver también
Categorías
Más información sobre Genomics and Next Generation Sequencing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!