What is the most efficient way to obtain the centroid of each cluster of centroids in the matrix produced by 'kmeans' cluster analysis?
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Tony
el 3 de Dic. de 2016
Respondida: Tony
el 4 de Dic. de 2016
I am counting geese in large flocks in aerial photos using the 'detectSURFFeatures' function to identify individual geese. This gives me multiple feature centroids clustered at each goose image, which I analyze with 'kmeans'. I am currently sorting the resulting matrix of centroid values on cluster labels and using loops to calculate the mean centroid value for each cluster (see attached code).
0 comentarios
Respuesta aceptada
Image Analyst
el 3 de Dic. de 2016
The most efficient way would be to get the second return argument of kmeans(). I mean, it gives you the cluster centers so why not accept them?
0 comentarios
Más respuestas (1)
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!