plotting phase diagram of a strange attracter
    3 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    myetceteramail myetceteramail
 el 23 de Mayo de 2017
  
    
    
    
    
    Editada: myetceteramail myetceteramail
 el 24 de Mayo de 2017
            i have a set of first order nonlinear differential equation called the chen's system of ode. i have numerically calculated the solution x(t),y(t),z(t) in terms of a polynomial approximation of the solution. my solution is a polynomial each of x(t),y(t),z(t) with degree 71. Now how do i draw the phase diagram here is what i have done
   x=zeros(1,72);
   x(1)= -0.1;
   y=zeros(1,72);
   y(1)= 0.5;
   z=zeros(1,72);
   z(1)=-0.6;
   for k=0:70
    x(k+2)=35*(gamma(1+k)/gamma(2+k))*(y(k+1)-x(k+1));
    sum=0;
    for l=1:k+1
        sum=sum+(x(l)*z(k+2-l));
    end
    y(k+2)=(gamma(1+(k))/gamma(2+(k)))*(-8*x(k+1)-sum+27*y(k+1));
    sum=0;
    for l=1:k+1
    sum=sum+(x(l)*y(k+2-l));
    end
    z(k+2)=(gamma(1+k)/gamma(2+k))*(-3*z(k+1)+sum);
    end
These x(k's) are my coeffecients for my polynomials. after this when i plot for example x(t) i do it like this
          s=fliplr(x);
          t=0:0.05:250;
          v=polyval(s,t);
           plot(v).
please somebody help
0 comentarios
Respuestas (0)
Ver también
Categorías
				Más información sobre Polynomials en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!