With what parameters we can identify whether the neural network is properly trained or not
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Nithya SIvasamy
el 19 de Sept. de 2017
Comentada: Nithya SIvasamy
el 20 de Sept. de 2017
I am new to neural networks.I have created & trained the neural network using nprtool in matlab.I am getting a network,but doesn't know whether the network properly works or whether the network has to be trained again.
With what parameters I can know this.When the neural network will be trained properly.
0 comentarios
Respuesta aceptada
Greg Heath
el 20 de Sept. de 2017
Use NMSE, the normalized-mean-square-error, related to the Rsquare (See Wikipedia) statistic:
0 <= NMSE = 1-Rsquare <= 1
NMSE = mse(target-output)/MSEref
where the reference MSE is obtained from the naïve constant output model
outputc = mean(target,2)
MSEref = mse(target - mean(target,2))
= mean(var(target',1))
If your NMSE is > 1, that means that your design is worse than just assuming the output is a constant!
Hope this helps
Thank you for formally accepting my answer
Greg
PS search both NEWSREADER and ANSWERS using
greg NMSE
Más respuestas (0)
Ver también
Categorías
Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!