Not Enough Input Arguments ode15s

1 visualización (últimos 30 días)
Neil Solan
Neil Solan el 7 de Feb. de 2018
Respondida: JK el 7 de Feb. de 2018
Trying to solve an ODE using ode15s and I'm getting this error:
Not enough input arguments.
Error in Homework3>ode1 (line 153)
theta_double_dot =
(F_0/J_eff)*cos(omega*t1)-(C_eff/J_eff)*(thetadot)-(K_eff/J_eff)*theta;
Error in Homework3 (line 113)
[t1,Y1] = ode15s(ode1,tspan,Initial,options);
Here is my code:
Initial = [theta_0,theta_dot_0,I_0];
tspan = 0:0.1:10;
%Linear Equation Solution:
[t1,Y1] = ode15s(ode1,tspan,Initial,options);
theta = Y1(:,1);
thetadot = Y1(:,2);
I = Y1(:,3);
function dxdt = ode1(t1,Y1)
g = 9.81; %[m/s^2]
M_b = 1; %[kg]
M = 0.5; %[kg]
m = 3; %[kg]
J_b = 1.25; %[kg/m^2]
k_1 = 250; %[N/m]
c_1 = 5; %[N*s/m]
c_2 = 10; %[N*s/m]
L = 1.1; %[m]
s = 0.4; %[m]
h = 0.8; %[m]
L_induct = 400*10^-6; %[H]
R = 100; %[Ohms]
alpha = 0.4; %[V*s/m]
a = 0.45; %[m]
b = 0.6; %[m]
F_0 = 15; %[N]
omega = 4.3508; %[rad/s]
theta_0 = -pi/8; %[rad]
theta_dot_0 = 0.1; %[rad/s]
I_0 = 0; %[A]
J_eff = J_b+M*(L-s)^2+((m/L)*((L-s)^3+s^3)/3);
K_eff = ((k_1*(h-s)^2)+(M_b*g*s)-(M*g*(L-s))-(m*g*((L/2)-s)));
C_eff = ((c_1*(h-s)^2)+(c_2*(s)^2));
Initial = [theta_0,theta_dot_0,I_0];
theta = Initial(1);
thetadot = Initial(2);
I = Initial(3);
theta_double_dot = (F_0/J_eff)*cos(omega*t1)-(C_eff/J_eff)*(thetadot)-(K_eff/J_eff)*theta;
I_eq = (alpha*(sqrt(((L-s)*cos(theta*thetadot-a))^2+((L-s)*sin(theta*thetadot-b))^2)-(I*R))/L_induct);
dxdt = zeros(size(Initial));
dxdt(1) = thetadot;
dxdt(2) = theta_double_dot;
dxdt(3) = I_eq;
end
I really don't have much experience with ode15s at all so for all I know I could be completely off with this one, so any other mistakes that you might see and could point out would be greatly appreciated. Thanks!

Respuestas (1)

JK
JK el 7 de Feb. de 2018
Here is the code: please ask if you have any further queries.
theta_0=1; % put your values here
theta_dot_0=2; % put your values here
I_0=3; % put your values here
Initial = [theta_0,theta_dot_0,I_0]';
tspan = 0:0.1:10;
%Linear Equation Solution:
[t1,Y1] = ode15s(@(t,Y) ode1(t,Y),tspan,Initial);
theta = Y1(:,1);
thetadot = Y1(:,2);
I = Y1(:,3);
figure
plot(t1,Y1(:,1));
title('theta');
figure
plot(t1,Y1(:,2));
title('thetadot');
figure
plot(t1,Y1(:,3));
title('I');
function dxdt = ode1(t1,~)
g = 9.81; %[m/s^2]
M_b = 1; %[kg]
M = 0.5; %[kg]
m = 3; %[kg]
J_b = 1.25; %[kg/m^2]
k_1 = 250; %[N/m]
c_1 = 5; %[N*s/m]
c_2 = 10; %[N*s/m]
L = 1.1; %[m]
s = 0.4; %[m]
h = 0.8; %[m]
L_induct = 400*10^-6; %[H]
R = 100; %[Ohms]
alpha = 0.4; %[V*s/m]
a = 0.45; %[m]
b = 0.6; %[m]
F_0 = 15; %[N]
omega = 4.3508; %[rad/s]
theta_0 = -pi/8; %[rad]
theta_dot_0 = 0.1; %[rad/s]
I_0 = 0; %[A]
J_eff = J_b+M*(L-s)^2+((m/L)*((L-s)^3+s^3)/3);
K_eff = ((k_1*(h-s)^2)+(M_b*g*s)-(M*g*(L-s))-(m*g*((L/2)-s)));
C_eff = ((c_1*(h-s)^2)+(c_2*(s)^2));
Initial = [theta_0,theta_dot_0,I_0];
theta = Initial(1);
thetadot = Initial(2);
I = Initial(3);
theta_double_dot = (F_0/J_eff)*cos(omega*t1)-(C_eff/J_eff)*(thetadot)-(K_eff/J_eff)*theta;
I_eq = (alpha*(sqrt(((L-s)*cos(theta*thetadot-a))^2+((L-s)*sin(theta*thetadot-b))^2)-(I*R))/L_induct);
dxdt = zeros(3,1);
dxdt(1) = thetadot;
dxdt(2) = theta_double_dot;
dxdt(3) = I_eq;
end

Categorías

Más información sobre Ordinary Differential Equations en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by