How to Loop the neural network training to choose the best performance?
15 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Chin Kui Ku
el 31 de Jul. de 2018
Comentada: Chin Kui Ku
el 1 de Ag. de 2018
Hi, I need some help on how to train a network for different value of Neurons, and save the MSE then choose the best MSE to select the best trained network.
I am using the fitnet as follows:
trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation.
% Create a Fitting Network & set number of neurons
hiddenLayerSize = 30;
net = fitnet(hiddenLayerSize,trainFcn);
[net,tr] = train(net,X,T);
testX = X(:,tr.testInd);
testT = T(:,tr.testInd);
testY = net(testX);
perf = mse(net,testT,testY)
0 comentarios
Respuesta aceptada
KSSV
el 31 de Jul. de 2018
3 comentarios
KSSV
el 1 de Ag. de 2018
N = [ 5, 10, 15, 20, 25, 30, 35, 40. ];
NN = cell(length(N),1) ;
P = zeros(length(N),1) ;
for i = 1:length(N)
trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation.
% Create a Fitting Network & set number of neurons
hiddenLayerSize = N(i);
net = fitnet(hiddenLayerSize,trainFcn);
[net,tr] = train(net,X,T);
NN{i} = net ;
testX = X(:,tr.testInd);
testT = T(:,tr.testInd);
testY = net(testX);
perf = mse(net,testT,testY) ;
P(i) = perf ;
end
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!