BAYESIAN OPTIMIZATION OF A NEURAL NETWORK

1 visualización (últimos 30 días)
GEORGIOS BEKAS
GEORGIOS BEKAS el 7 de Ag. de 2018
Comentada: Greg Heath el 7 de Ag. de 2018
I wrote the following code to optimize the architecture of a neural network via Bayesian optimization. What's wrong with it?
clc
clear
data = xlsread('Geor.xls')
t = data(:,5)'
x = data(:,1:4)'
trainFcn = 'trainbr';
hiddenLayerSize = optimizableVariable('hiddenLayerSize',[1,4]);
net.divideParam.trainRatio = optimizableVariable('net.divideParam.trainRatio',[0.4,0.75]);
vars =[hiddenLayerSize, net.divideParam.trainRatio]
net = fitnet(hiddenLayerSize,trainFcn);
net.divideParam.valRatio = 0.5*(100-net.divideParam.trainRatio*100)/100;
net.divideParam.testRatio = 0.5*(100-net.divideParam.trainRatio*100)/100;
[net,tr] = train(net,x,t);
y = net(x);
e = gsubtract(t,y);
mae = sum(abs(e))/40
performance = perform(net,t,y);
fun = @(x)mae(x, vars)
results = bayesopt(fun,vars)
  3 comentarios
Greg Heath
Greg Heath el 7 de Ag. de 2018
If you want to use data to explain your problem, use a MATLAB set:
help nndatasets
and
doc nndatasets
Greg
Greg Heath
Greg Heath el 7 de Ag. de 2018
close all, clear all, clc
x = [-1:.05:1]; % FROM HELP TRAINBR
t = sin(2*pi*x)+0.1*randn(size(x));
trainFcn = 'trainbr';
hiddenLayerSize = optimizableVariable ('hiddenLayerSize',[1,4]);
net.divideParam.trainRatio = optimizableVariable('net.divideParam.trainRatio',[0.4,0.75]);
vars =[hiddenLayerSize,net.divideParam.trainRatio]
net = fitnet(hiddenLayerSize,trainFcn);
Error using fitnet (line 69)
Parameters.hiddenSizes is not numeric.

Iniciar sesión para comentar.

Respuestas (0)

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by