Subscripted assignment dimension mismatch.
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
i have this error
Subscripted assignment dimension mismatch.
Error in Untitled4 (line 106)
rgbest(run,:)=gbest;
the code is
%---------------------------------------------------------------------------------------------------------------------------------start
tic
clc
clear all
close all
rng default
LB=[0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05]; % lower bounds of variables
UB=[1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1]; % upper bounds of variables
% pso parameters values
m=14; % number of variables
n=100; % population size
wmax=0.9; % inertia weight
wmin=0.4; % inertia weight
c1=2; % acceleration factor
c2=2; % acceleration factor
% pso main program----------------------------------------------------start
maxite=500; % set maximum number of iteration
maxrun=10; % set maximum number of runs need to be
for run=1:maxrun
run
% pso initialization----------------------------------------------start
for i=1:n
for j=1:m
x0(i,j)=round(LB(j)+rand()*(UB(j)-LB(j)));
end
end
x=x0; % initial population
v=0.1*x0; % initial velocity
f0=cell(1,n); %preallocation
for i=1:n
f0{i}=ofun(x0(i,:));
end
[fmin0,index0]=min(f0{i});
pbest=x0; % initial pbest
gbest=x0(index0,:); % initial gbest
% pso initialization-----------------------------------------------end
% pso algorithm---------------------------------------------------start
ite=1;
tolerance=1;
while ite<=maxite
tolerance>1e-12
w=wmax-(wmax-wmin)*ite/maxite; % update inertial weight
% pso velocity updates
for i=1:n
for j=1:m
v(i,j)=w*v(i,j)+c1*rand()*(pbest(i,j)-x(i,j))...
+c2*rand()*(gbest(1,j)-x(i,j));
end
end
% pso position update
for i=1:n
for j=1:m
x(i,j)=x(i,j)+v(i,j);
end
end
% handling boundary violations
for i=1:n
for j=1:m
if x(i,j)<LB(j)
x(i,j)=LB(j);
elseif x(i,j)>UB(j)
x(i,j)=UB(j);
end
end
end
% evaluating fitness
f=cell(1,50); %preallocation
for i=1:n
f{i}=ofun(x(i,:));
end
% updating pbest and fitness
for i=1:n
if f{i}<f0{i}
pbest(i,:)=x(i,:);
f0{i}=f{i};
end
end
[fmin,index]=min(f0{i});
% finding out the best particle
ffmin(ite,run)=fmin(1); % storing best fitness
ffite(run)=ite; % storing iteration count
% updating gbest and best fitness
if fmin<fmin0
gbest=pbest(index,:);
fmin0=fmin;
end
% calculating tolerance
if ite>100;
tolerance=abs(ffmin(ite-100,run)-fmin0);
end
% displaying iterative results
if ite==1
fprintf('Iteration Best particle Objective fun\n');
end
fprintf('%8g %8g %8.4f\n',ite,index,fmin0);
ite=ite+1;
end
% pso algorithm---------------------------------------------------end
gbest
fvalue=2.633*x(1)+2.992*x(2)+3.134*x(3)+3.678*x(4)+3.620*x(5)+2.948*x(6)+1.607*x(7)+2.952*x(8)+3.348*x(9)+3.680*x(10)+3.774*x(11)+2.995*x(12)+3.237*x(13)+1.608*x(14);
fff(run)=fvalue
rgbest(run,:)=gbest;
fprintf('--------------------------------------\n');
end
% pso main program------------------------------------------------------end
fprintf('\n\n');
fprintf('*********************************************************\n');
fprintf('Final Results-----------------------------\n');
[bestfun,bestrun]=min(fff)
best_variables=rgbest(bestrun,:)
fprintf('*********************************************************\n');
toc
% PSO convergence characteristic
plot(ffmin(1:ffite(bestrun),bestrun),'-k');
xlabel('Iteration');
ylabel('Fitness function value');
title('PSO convergence characteristic')
%##########################################--------------------------end
2 comentarios
Adam
el 4 de Dic. de 2018
You should presize rgbest so it is the correct size before doing an assignment of that kind.
Respuestas (0)
Ver también
Categorías
Más información sobre Particle Swarm en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!