Question about number format
    3 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    holistic
 el 14 de Dic. de 2018
  
    
    
    
    
    Comentada: holistic
 el 17 de Dic. de 2018
            When I calculate the eigenvectors of the following matrix:
mat=[1,2;2,1]; 
[V,D]=eig(mat)
I get: 
V =
   -0.7071    0.7071
    0.7071    0.7071 
However, this is not the correct answer, see Wolfram Alpha results or verify by yourself that the correct answer are the vectors:
    [1,1] and [-1,1]
Could someone explain to be what went wrong here?
0 comentarios
Respuesta aceptada
  Steven Lord
    
      
 el 14 de Dic. de 2018
        However, this is not the correct answer
You're assuming there is only one correct answer. That is not a valid assumption in this case.
Multiplying the eigenvector by any non-zero scalar just scales the eigenvector, and that scaled eigenvector still satisfies the equation that eigenvectors must satisfy. This makes sense if you look at the essential definition according to Wikipedia.
"In essence, an eigenvector v of a linear transformation T is a non-zero vector that, when T is applied to it, does not change direction. Applying T to the eigenvector only scales the eigenvector by the scalar value λ, called an eigenvalue."
See this example:
% Compute eigenvalues and eigenvectors
% A = magic(6)
[V, D] = eig(A)
% Does the first eigenvalue and eigenvector satisfy A*V = V*D?
shouldBeCloseToZeroVector1 = A*V(:, 1) - V(:, 1) * D(1, 1) % Close enough
% Multiple the first eigenvector by 2
twice = 2*V(:, 1);
% Does two times the first eigenvalue and eigenvector satisfy A*V = V*D?
shouldBeCloseToZeroVector2 = A*twice - twice * D(1, 1) % Also close enough
This is not a bug.
Más respuestas (1)
  Mark Sherstan
      
 el 14 de Dic. de 2018
        
      Editada: Mark Sherstan
      
 el 14 de Dic. de 2018
  
      The answer is correct, MATLAB is just outputting the unit vector answer.
 , where i is either 1 or 2.
, where i is either 1 or 2.0 comentarios
Ver también
Categorías
				Más información sobre Linear Algebra en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

