What is the minimum slope of y=x^3-9*x^2+15*x? matlab code

2 visualizaciones (últimos 30 días)
Busra Tabak
Busra Tabak el 16 de Dic. de 2018
Comentada: Image Analyst el 16 de Dic. de 2018
What is the minimum slope of y=x^3-9*x^2+15*x?
  2 comentarios
madhan ravi
madhan ravi el 16 de Dic. de 2018
what have you tried so far?
Busra Tabak
Busra Tabak el 16 de Dic. de 2018
syms x
f=x^3-9*x^2+15*x;
fprime=diff(f,x);
fdprime=diff(fprime,x);
xstar=double(solve(fprime==0,x));
xstar=unique(xstar);
for i=1:numel(xstar)
if subs(fdprime,x,xstar(i))>0
disp('min')
double(subs(f,x,xstar(i)))
end
end
I wrote this code and got this solution. Is it correct?
min
ans =
-25

Iniciar sesión para comentar.

Respuestas (1)

Image Analyst
Image Analyst el 16 de Dic. de 2018
Hint:
slope = 3 * x .^ 2 - 18 * x + 15; % Derivative.
minSlope = min(slope)
minAbsSlope = min(abs(slope))
Plot it, using linspace() for x, and see what you see. Of course since it's a parabola, the min absolute value of the slope will be zero and the min slope will depend on how far negative you want to evaluate x. For x that is more negative, the slope will be steeper.
  2 comentarios
Busra Tabak
Busra Tabak el 16 de Dic. de 2018
I do not understand and I can not write the code. Did you find -25 as answer?
Image Analyst
Image Analyst el 16 de Dic. de 2018
No, of course not. Did you just plot the function and see it? Nowhere does it turn downwards and have a negative slope:
x = linspace(-50, 50, 100000);
y = x.^3-9*x.^2+15*x;
subplot(2, 1, 1);
plot(x, y, 'b-')
grid on;
fontSize = 20;
title('y = x .^ 3 - 9 * x .^ 2 + 15 * x', 'FontSize', fontSize, 'Interpreter', 'none');
xlabel('x', 'FontSize', fontSize, 'Interpreter', 'none');
ylabel('y', 'FontSize', fontSize, 'Interpreter', 'none');
slope = 3 * x .^ 2 - 18 * x + 15; % Derivative.
minSlope = min(slope)
minAbsSlope = min(abs(slope))
subplot(2, 1, 2);
plot(x, slope, 'b-')
xlabel('x', 'FontSize', fontSize, 'Interpreter', 'none');
ylabel('Slope of y', 'FontSize', fontSize, 'Interpreter', 'none');
title('slope = 3 * x .^ 2 - 18 * x + 15', 'FontSize', fontSize, 'Interpreter', 'none');
grid on;
0000 Screenshot.png
It's a parabola so what do you think the min absolute slope would be? And don't you see and understand that the min slope (most negative) will depend on how far out into the negative x territory you want to go?

Iniciar sesión para comentar.

Categorías

Más información sobre Annotations en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by