Improving Speed and Reducing Memory Consumption with Creation of 2D Sparse Convolution Matrix

6 visualizaciones (últimos 30 días)
In a previous question of mine, Creating Convolution Matrix of 2D Kernel for Different Shapes of Convolution, among answers of the great Matt I came up with the following code:
function [ mK ] = CreateConvMtx2DSparse( mH, numRows, numCols, convShape )
CONVOLUTION_SHAPE_FULL = 1;
CONVOLUTION_SHAPE_SAME = 2;
CONVOLUTION_SHAPE_VALID = 3;
numColsKernel = size(mH, 2);
numBlockMtx = numColsKernel;
cBlockMtx = cell(numBlockMtx, 1);
for ii = 1:numBlockMtx
cBlockMtx{ii} = CreateConvMtxSparse(mH(:, ii), numRows, convShape);
end
switch(convShape)
case(CONVOLUTION_SHAPE_FULL)
% For convolution shape - 'full' the Doubly Block Toeplitz Matrix
% has the first column as its main diagonal.
diagIdx = 0;
numRowsKron = numCols + numColsKernel - 1;
case(CONVOLUTION_SHAPE_SAME)
% For convolution shape - 'same' the Doubly Block Toeplitz Matrix
% has the first column shifted by the kernel horizontal radius.
diagIdx = floor(numColsKernel / 2);
numRowsKron = numCols;
case(CONVOLUTION_SHAPE_VALID)
% For convolution shape - 'valid' the Doubly Block Toeplitz Matrix
% has the first column shifted by the kernel horizontal length.
diagIdx = numColsKernel - 1;
numRowsKron = numCols - numColsKernel + 1;
end
vI = ones(min(numRowsKron, numCols), 1);
mK = kron(spdiags(vI, diagIdx, numRowsKron, numCols), cBlockMtx{1});
for ii = 2:numBlockMtx
diagIdx = diagIdx - 1;
mK = mK + kron(spdiags(vI, diagIdx, numRowsKron, numCols), cBlockMtx{ii});
end
end
The code is running pretty fast.
But I think there might be ways to improve it farther, specifically in the following lines:
vI = ones(min(numRowsKron, numCols), 1);
mK = kron(spdiags(vI, diagIdx, numRowsKron, numCols), cBlockMtx{1});
for ii = 2:numBlockMtx
diagIdx = diagIdx - 1;
mK = mK + kron(spdiags(vI, diagIdx, numRowsKron, numCols), cBlockMtx{ii});
end
This code snippet basically creates a block matrix form the sparse matrices in the cell array cBlockMtx. Where the diagonal of the first element in cBlockMtx is defiend by diagIdx.
Is there a more efficient way to generate this matrix? The main issue is that each time generating kron(spdiags(vI, diagIdx, numRowsKron, numCols), cBlockMtx{ii}) requires a lot of memory.
  2 comentarios
Royi Avital
Royi Avital el 23 de En. de 2019
Well, I tried this:
function [ mK ] = CreateConvMtx2DI( mH, numRows, numCols, convShape )
CONVOLUTION_SHAPE_FULL = 1;
CONVOLUTION_SHAPE_SAME = 2;
CONVOLUTION_SHAPE_VALID = 3;
numColsKernel = size(mH, 2);
numBlockMtx = numColsKernel;
cBlockMtx = cell(numBlockMtx + 1, 1);
for ii = 1:numBlockMtx
cBlockMtx{ii} = CreateConvMtx1D(mH(:, ii), numRows, convShape);
end
cBlockMtx{numBlockMtx + 1} = sparse([], [], [], size(cBlockMtx{numBlockMtx}, 1), size(cBlockMtx{numBlockMtx}, 2), 0);
switch(convShape)
case(CONVOLUTION_SHAPE_FULL)
% For convolution shape - 'full' the Doubly Block Toeplitz Matrix
% has the first column as its main diagonal.
diagIdx = 0;
numRowsKron = numCols + numColsKernel - 1;
case(CONVOLUTION_SHAPE_SAME)
% For convolution shape - 'same' the Doubly Block Toeplitz Matrix
% has the first column shifted by the kernel horizontal radius.
diagIdx = floor(numColsKernel / 2);
numRowsKron = numCols;
case(CONVOLUTION_SHAPE_VALID)
% For convolution shape - 'valid' the Doubly Block Toeplitz Matrix
% has the first column shifted by the kernel horizontal length.
diagIdx = numColsKernel - 1;
numRowsKron = numCols - numColsKernel + 1;
end
vC = (numBlockMtx + 1) * ones(numRowsKron, 1);
vR = (numBlockMtx + 1) * ones(numCols, 1);
vC(1:(numBlockMtx - diagIdx)) = (diagIdx + 1):numBlockMtx;
vR(1:(diagIdx + 1)) = (diagIdx + 1):-1:1;
mK = cell2mat(cBlockMtx(toeplitz(vC, vR)));
end
Namely I replaced:
vI = ones(min(numRowsKron, numCols), 1);
mK = kron(spdiags(vI, diagIdx, numRowsKron, numCols), cBlockMtx{1});
for ii = 2:numBlockMtx
diagIdx = diagIdx - 1;
mK = mK + kron(spdiags(vI, diagIdx, numRowsKron, numCols), cBlockMtx{ii});
end
With:
vC = (numBlockMtx + 1) * ones(numRowsKron, 1);
vR = (numBlockMtx + 1) * ones(numCols, 1);
vC(1:(numBlockMtx - diagIdx)) = (diagIdx + 1):numBlockMtx;
vR(1:(diagIdx + 1)) = (diagIdx + 1):-1:1;
mK = cell2mat(cBlockMtx(toeplitz(vC, vR)));
It turned out to be slower (x2 slower). So I will be happy to have another idea...

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Creating and Concatenating Matrices en Help Center y File Exchange.

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by