I have a problem with this ode45

1 visualización (últimos 30 días)
fartash2020
fartash2020 el 31 de En. de 2019
Comentada: Star Strider el 31 de En. de 2019
Hi Matlab Users,
I cannot understand what is wrong with my code. I would appreciate if anyone could help me.
I got this error:
Index in position 1 is invalid. Array indices must be positive integers or logical values.
% Define model parameters: d, Lambda, DeltaE, V, Om, kappa
clear; clc;
DeltaE = 0;
Lambda = 1e-1;
d = 12;
kappa = 1;
Ksi = 5e-5; % damping parameter
Om = 1e-2; % driving frequency
%V = 9.2e-3; % driving amplitude
V = 9e-4;
tspan=[0:1e5];
% Define the function with integration variables
fun_ode = @(t, y) shapiro(t,y,d,DeltaE,Lambda,V,Om,kappa);
% fun_shapiro is a function which contains th coupled differential equations of the driven undamped soliton-surface plasmon Josephson junction with asymmetric coupling. You need to code this.
% Integrator options
options = odeset('RelTol',1e-7,'AbsTol',[1e-8 1e-8]);
%Define time array in integer multiples of 2*pi/Om
t = 2*pi/Om*(1:200);
%Define a set of initial points Phi0,Z0. A coarse example is the following:
[Phi0,Z0] = meshgrid(-1:0.4:1,-1:0.4:1);
% initialize the phase space figure
figure(1),clf;
axis([-1.5 1 -0.3 0.3]);
grid on;
hold on;
% Integrate the system from each initial point and plot the results
[T, Y]=ode45(fun_ode,tspan,[Phi0(i,j) Z0(i,j)],options);
% Collapse the Phi values into the [-1,1] range.
Y(:,1) = wrapToPi(Y(:,1)*pi)./pi;
plot(Y(:,1),Y(:,2),'.k','MarkerSize',3);
% plot the same values displaced by 2*pi. This is just for a better looking figure:
hold on;
plot(Y(:,1)-2,Y(:,2),'.k','MarkerSize',3);
and this is shapiro function
function dydt = shapiro(t,y,DeltaE,Lambda,d,kappa,Ksi,Om,V)
dydt = zeros(2,1);
qc = fun_q(Lambda,d,y(2));
a = sqrt((1-y(2))./(1+y(2)));
dydt(1) = (DeltaE + Lambda.*y(2) - 0.5*(a.*kappa - 1./a)...
*qc.*cos(pi*y(1)) + V*cos(t))/(Om*pi);
dydt(2) = -.5*sqrt((1-y(2))*(1+y(2)))*qc*(1+kappa)...
*sin(pi*y(1))/Om - Ksi*pi*dydt(1);
end
in addition to that
function q = fun_q(Lambda,d,Z)
q = sqrt(.5*(1+Z))*exp(-d*sqrt(2*Lambda*(1+Z)));
%q = 1.d-5; % Constant q for BEC-Josephson model
end
With my regards,
  4 comentarios
fartash2020
fartash2020 el 31 de En. de 2019
I would highly appreciate if you could you give the link to that?
madhan ravi
madhan ravi el 31 de En. de 2019
respond to James answer below

Iniciar sesión para comentar.

Respuesta aceptada

Star Strider
Star Strider el 31 de En. de 2019
Could the problem be in or related to ‘fun_q’ that you have not posted?
It would likely help if you posted it.
  6 comentarios
fartash2020
fartash2020 el 31 de En. de 2019
I fixed the code and I got the plots, thank you all
Star Strider
Star Strider el 31 de En. de 2019
As always, my pleasure.

Iniciar sesión para comentar.

Más respuestas (1)

James Tursa
James Tursa el 31 de En. de 2019
I don't see anywhere in your code where you define i and j before using them as indexes into Phi0 and Z0, so they default to the imaginary numbers, hence the error. Perhaps you intended to wrap all of this in for loops?
  2 comentarios
fartash2020
fartash2020 el 31 de En. de 2019
yes your are right, but even if I choose any random i and j this does not work. lets set them 1 and 1 respectively. Maybe there is something wrong with the shapiro function that I have written,
James Tursa
James Tursa el 31 de En. de 2019
Are you saying that if you set i=1 and j=1 just prior to the line in question, that you get the exact same error? Or do you get a different error?

Iniciar sesión para comentar.

Categorías

Más información sobre Programming en Help Center y File Exchange.

Etiquetas

Productos


Versión

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by