Info

La pregunta está cerrada. Vuélvala a abrir para editarla o responderla.

I would like to draw a 4d isosurfce plot, where the 4th dimension, is the density of each grid voxel, and I would like it to be thee isovalue

1 visualización (últimos 30 días)
M is a 3d grid of points.
Ro(t) is the density at grid point t.
Ro3D is thee density at each pixel as a 3D matrix that corrwesponds to each voxel.
How would you plot it?
Thank you!
M=DataSRX(find(idx==1),4:6);
StepSize=100; % [nm]
Xgrid=min(M(:,1)):StepSize:max(M(:,1));
Ygrid=min(M(:,2)):StepSize:max(M(:,2));
Zgrid=min(M(:,3)):StepSize:max(M(:,3));
Sigma=StepSize;
XGsize=numel(Xgrid); YGsize=numel(Ygrid); ZGsize=numel(Zgrid);
Z=zeros(1,XGsize*YGsize*ZGsize);
Ind=zeros(size(M,1),1);
Ro=Z;
% Z(1)=Xgrid(1),Ygrid(1),Zgrid(1); Z(2)=Xgrid(2),Ygrid(2),Zgrid(2);
% Z(Xn)=Xgrid(Xn),Ygrid(1),Zgrid(1); Z(Xn+1)=Xgrid(1),Ygrid(2),Zgrid(1);
Norm=1./((Sigma*sqrt(2*pi)^3));
for i=1:size(M,1)
tx=ceil((M(i,1)-min(M(:,1)))/StepSize); ty=ceil((M(i,2)-min(M(:,2)))/StepSize); tz=ceil((M(i,3)-min(M(:,3)))/StepSize);
if ty==0
ty=1;
end
if tx==0
tx=1;
end
if tz==0
tz=1;
end % if tz==0
t=(XGsize+YGsize)*(tz-1)+XGsize*(ty-1)+tx;
Z(t)=Z(t)+1;
Ind(i)=t;
Ro(t)=Norm*exp(((M(i,1)-Xgrid(tx))^2+(M(i,2)-Ygrid(ty))^2+(M(i,3)-Zgrid(tz))^2)/(2*Sigma^2))+Ro(t);
end % for i=1:size(M,1)
RoDense=Ro.*Z;
Ro3D=reshape(RoDense,[XGsize,YGsize,ZGsize]);
%{
Ro3D=zeros(XGsize,YGsize,ZGsize);
for i=1:numel(Ro)
[I,J,K]=ind2sub([XGsize,YGsize,ZGsize],i);
Ro3D(I,J,K)=Ro(i);
end % for i=1:numel(Ro)
%}
Ro3D_round=round(Ro3D,3);
  2 comentarios
KSSV
KSSV el 18 de Jun. de 2019
Not clear.......attaching data or an pictorial example with your expectations will help us to help you.

Respuestas (1)

Guy Nir
Guy Nir el 18 de Jun. de 2019
To make it more clear I attached the data, and added code to parse the file.
% Plot density
%% Parse file
FileName='/Users/guynir/Dropbox (HMS)/Collaborations/MAMR Lab/Irene/CSV from paper/CSV_6columns/2017-08-03-19-34-25_Location-05_6column.csv';
[Header, DataSRX] = ReadSRXParticlesCSV(FileName);
figure(); scatter3(DataSRX(:,4),DataSRX(:,5),DataSRX(:,6),20,'filled')
axis equal
%% Separate homologs
Ploidy=2;
idx = kmeans(DataSRX(:,4:6),Ploidy);
figure(); scatter3(DataSRX(find(idx==1),4),DataSRX(find(idx==1),5),DataSRX(find(idx==1),6),20,'filled','r')
hold on
scatter3(DataSRX(find(idx==2),4),DataSRX(find(idx==2),5),DataSRX(find(idx==2),6),20,'filled','b')
axis equal
%% Surface plots
M=DataSRX(find(idx==1),4:6);
shp = alphaShape(M);
figure(); plot(shp)
%% Density map
StepSize=100; % [nm]
Xgrid=min(M(:,1)):StepSize:max(M(:,1));
Ygrid=min(M(:,2)):StepSize:max(M(:,2));
Zgrid=min(M(:,3)):StepSize:max(M(:,3));
Sigma=StepSize;
XGsize=numel(Xgrid); YGsize=numel(Ygrid); ZGsize=numel(Zgrid);
Z=zeros(1,XGsize*YGsize*ZGsize);
Ind=zeros(size(M,1),1);
Ro=Z;
% Z(1)=Xgrid(1),Ygrid(1),Zgrid(1); Z(2)=Xgrid(2),Ygrid(2),Zgrid(2);
% Z(Xn)=Xgrid(Xn),Ygrid(1),Zgrid(1); Z(Xn+1)=Xgrid(1),Ygrid(2),Zgrid(1);
Norm=1./((Sigma*sqrt(2*pi)^3));
for i=1:size(M,1)
tx=ceil((M(i,1)-min(M(:,1)))/StepSize); ty=ceil((M(i,2)-min(M(:,2)))/StepSize); tz=ceil((M(i,3)-min(M(:,3)))/StepSize);
if ty==0
ty=1;
end
if tx==0
tx=1;
end
if tz==0
tz=1;
end % if tz==0
t=(XGsize+YGsize)*(tz-1)+XGsize*(ty-1)+tx;
Z(t)=Z(t)+1;
Ind(i)=t;
Ro(t)=Norm*exp(((M(i,1)-Xgrid(tx))^2+(M(i,2)-Ygrid(ty))^2+(M(i,3)-Zgrid(tz))^2)/(2*Sigma^2))+Ro(t);
end % for i=1:size(M,1)
RoDense=Ro.*Z;
Ro3D=reshape(RoDense,[XGsize,YGsize,ZGsize]);
Ro3D_round=round(Ro3D,3);

La pregunta está cerrada.

Etiquetas

Productos


Versión

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by