I am trying to solve the inverse of a matrix A, using the equation AX=I and LU factorization. My lufact function worked originally, but when using to compute the inverse, A and X both end up as identity matrices.
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I am trying to solve the inverse of a matrix A, using the equation AX=I and LU factorization. My lufact function worked originally, but when using to compute the inverse, A and X both end up as identity matrices.
function [A, X] = lufact(I)
% LUFACT LU factorization
% Gaussian elimination
for j = 1:n-1
for i = j+1:n
A(i,j) = I(i,j) / I(j,j); % row multiplier
I(i,:) = I(i,:) - A(i,j)*I(j,:);
end
end
X = rand(n,n);
end
2 comentarios
Athul Prakash
el 9 de Oct. de 2019
Not sure that I follow your approach..
You want to find X such that AX=I, but when you factorize I, won't it produce any 2 factors which multiply to I (instead of one of them being A and the other X)?
Also, please share the dimensions of your matrix A.
Respuestas (0)
Ver también
Categorías
Más información sobre Linear Algebra en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!