classification using CNN (trainNetwork)

1 visualización (últimos 30 días)
Toqa Am
Toqa Am el 20 de Nov. de 2019
Why the validation accuracy of CNN using trainNetwork has been change in each rerun. It has been decreased from 89% to 39% in each re run the program.
Please could anyone answer me???
close all, clear all, clc;
output_folder=fullfile('datasets - Copy (2)','REMBRANDT') ; %creat file path
categories={'Grade_II - Copy','Grade_III - Copy','Grade_IV - Copy'};
imds=imageDatastore((fullfile(output_folder,categories)),'FileExtensions','.dcm','ReadFcn',@(x) dicomread(x),'LabelSource','foldernames');
[trainingset, testset]=splitEachLabel(imds, 0.8,0.2);
labelCount = countEachLabel(imds);
rng(1);
layers = [
imageInputLayer([128 128 1])
convolution2dLayer(3,8,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(1,'Stride',1)
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(1,'Stride',1)
convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(3)
dropoutLayer
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.01, ...
'MaxEpochs',40, ...
'Shuffle','every-epoch', ...
'ValidationData',testset, ...
'ValidationFrequency',60, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(trainingset,layers,options);

Respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by