DAE Problem : cannot understand how to find the problem in my code
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
This is code to solve 6 ode's and 12 algebraic equations. All of them are interdependent. How do I go about it? I keep getting errors but I am unable to solve it.
**M file**
*M file* function f=ncs1_dae(t,x)
%Input parameters
global alpha A AH AI AO AV ACS beta CPH CPI CPIN CPO CPV dB g hB hI hO hH hV Hmax k M MH min Pset qein R rhol rhov ri ro TIN TR vB lambda;
input()
%Variables
TI=x(1);
........
..........
=x(16);
%f(1) to f(6) are ODEs
f(1)=
f(2)=
f(3)=
f(4)=
f(5)=
f(6)=
%f(7) to f(18) are Algebraic Equations
f(7)=
f(8)=
f(9)=
f(10)=
f(11)=
f(12)=
f(13)=
f(14)=
f(15)=
f(16)=
f(17)=
f(18)=
f=f';
This is what I enter in the command window:
>> x0=[298 298 298 298 1 0.3 0 373 0 0 0 0 0 0 0 0.0013 0.0041 0.0056];
>> tspan=[0 1200];
>> M=[eye(6,18);zeros(12,18)];
>> options=odeset('Mass',M);
>> [t1,x1]=ode15s(f,[0,1200],x0,options);
The warning msg I get is : Warning: Failure at t=3.014342e-01. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (8.881784e-16) at time t. > In ode15s at 753 >> if true
% code
end
2 comentarios
Respuestas (1)
Jan
el 1 de Oct. de 2012
Editada: Jan
el 1 de Oct. de 2012
You can define an DAE such that there is no feasible point. If the mass matrix is singular, as in your case, the initial slope M(t0, y0) * y'(0) = f(t0, y0) must exist.
Imagine a DAE which describes a point sliding on a circulare wire. If you start the integration with a point apart from the wire, there is no valid first step of the integration, because it is impossible to keep the trajectory on the feasible path.
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!