Cannot have a dimension-increasing custom layer with dlnetwork
17 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
John Smith
el 13 de Dic. de 2019
Editada: John Smith
el 5 de Oct. de 2021
Hello,
I implemented in 2019b a simple reshape layer for Deep Learning which I'd like to use with a dlnetwork.
The network passes analyzeNetwork(), but fails with:
Error using dlarray (line 179)
Number of dimension labels must be greater than or equal to the number of dimensions in the input array.
Error in nnet.internal.cnn.layer.util.CustomLayerFunctionalStrategy>@(zi)dlarray(zi,Xdims)
After some digging, turns out the problem is in R2019b\toolbox\nnet\cnn\+nnet\+internal\+cnn\+layer\+util\CustomLayerFunctionalStrategy.m in predict() and forward() functions. There, the labels of the input X are captured through
[expectedType, Xdims, X] = processInput(this, X);
and then the labels are reapplied to the output of the layer in
Z = cellfun(@(zi) dlarray(zi, Xdims), Z, 'UniformOutput', false);
When the custom layer increases the number of dimensions of the output (as e.g. in reshape()) the error occurs.
Please report this bug/defficiency to Mathworks and suggest a workaround.
Thx,
D
PS This behaviour may exist in other places too.
PSS BTW, note that both predict() and forward() expect the output to be an ulabeled dlarray and verify this through calls to
this.LayerVerifier.verifyUnlabeledDlarray( 'predict', layer.OutputNames, Z )
or
this.LayerVerifier.verifyUnlabeledDlarray( 'forward', layer.OutputNames, Z )
so I'm not sure how the extra labels could be passed.
0 comentarios
Respuesta aceptada
Katja Mogalle
el 1 de Jul. de 2021
Hi John,
The capability that you are asking for has been added in R2021a. The following documentation example shows how to implement a custom layer that can change the number of data dimensions: https://www.mathworks.com/help/deeplearning/ug/define-custom-deep-learning-layer-with-formatted-inputs.html
A workaround could be to split the dlnetwork into two dlnetworks, one for the part before the reshape layer and one for the part after the reshape layer. Then you can do the reshaping of the output dlarrays from the first network in plain MATLAB code and pass the reshaped data to the second network.
I hope this helps.
Katja
3 comentarios
Jose Cortes-Briones
el 4 de Oct. de 2021
Hi John, Yes, this is a pain. My reshape layers stopped working when I tried to use them with dlnetworks. What I did was to add dummy singleton dimensions (labels) to the dlarrays from the start. These dimensions are just a waste of space/memory but the dlnetwork won't complain about a change in the number of labels when you reshape the dlarray.
Más respuestas (0)
Ver también
Categorías
Más información sobre Image Data Workflows en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!