filtering problem, need help
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Ali Asghar
el 1 de Feb. de 2020
Comentada: Star Strider
el 8 de Feb. de 2020
Dear
I have a EMG signal of 30000x4. with sampling frequency of 10KHz.
I filter noise by below code
NotchFilter = bandstop(Data01Raw,[49.9 50.1],Fs);
sEmgFilter = bandpass(NotchFilter(:,1:2),[20 500],Fs);
iEmgFilter = bandpass(NotchFilter(:,3:4),[600 2000],Fs);
Data02Filtered = [sEmgFilter iEmgFilter];
Questions
in above code bandpass or bandstop occur by which filer like is it butterwork or cheby or ellip?
I need to fiter the signal using butterworth 2nd order. How can i do this?
Thank you
2 comentarios
Walter Roberson
el 1 de Feb. de 2020
Editada: Walter Roberson
el 1 de Feb. de 2020
bandpass uses a fir filter if it can achieve the desgign goals with one, and otherwise uses a iir filter.
Respuesta aceptada
Star Strider
el 1 de Feb. de 2020
Request two outputs from the bandpass and bandstop functions. The second output is the digital filter object. Displaying the digital filter object in your Command Window will tell you everything you need to know about it.
For example —
Fs = 10E+3;
[NotchFilter, df] = bandstop(Data01Raw,[49.9 50.1],Fs);
then:
df
displays:
df =
digitalFilter with properties:
Coefficients: [8×6 double]
Specifications:
FrequencyResponse: 'bandstop'
ImpulseResponse: 'iir'
SampleRate: 10.0000e+003
StopbandAttenuation: 60.0000e+000
PassbandRipple2: 100.0000e-003
StopbandFrequency2: 50.0843e+000
PassbandRipple1: 100.0000e-003
PassbandFrequency2: 50.1000e+000
PassbandFrequency1: 49.9000e+000
StopbandFrequency1: 49.9157e+000
DesignMethod: 'ellip'
Use fvtool to visualize filter
Use designfilt to edit filter
Use filter to filter data
12 comentarios
Star Strider
el 8 de Feb. de 2020
I am not certain what you are asking. You can have buffer break the signal up into shorter segments if you want.
With respect to calculating the RMS value, if you have R2016a or later, you can use the movmean function instead of mean.
This computes the RMS value over a sliding window of 200 samples:
RMS_sigseg = sqrt(movmean(sigseg.^2, 200));
It results in a matrix the same size as the original matrix.
Note that the code you posted gives the mean of the absolute value. This is not the same as RMS value.
Más respuestas (0)
Ver también
Categorías
Más información sobre Digital Filter Design en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!