How to monitor Deep learning training

3 visualizaciones (últimos 30 días)
Mustafa Yildiz
Mustafa Yildiz el 13 de Abr. de 2020
Comentada: Mohammad Sami el 13 de Abr. de 2020
Hello i wanna monitor the training when its happening , how should i change the code for that ?
outputFolder = fullfile('faceset');
rootFolder = fullfile(outputFolder,'faces');
categories = {'Ali','amanda','Betul','Clarisse','Elizabet','Erica','Firdevs','Furkan','Gabia','Gabriela','Irem','Justa','Kadir','Laura','Mehmet','Merve','Mustafa','Oguz','Ruta','Vika','Yigit'}; %choosing the categories which is gonna go to training
imds = imageDatastore(fullfile(rootFolder,categories),'LabelSource','foldernames');
tbl = countEachLabel(imds);
minSetCount = min(tbl{:,2});
imds = splitEachLabel(imds, minSetCount,'randomize');
countEachLabel(imds);
Ali = find(imds.Labels == 'Ali',1);
amanda = find(imds.Labels == 'amanda',1);
net = resnet101();
net.Layers(1);
net.Layers(end);
[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');
imageSize = net.Layers(1).InputSize;
augmentedTrainingSet = augmentedImageDatastore(imageSize,...
trainingSet,'ColorPreprocessing','gray2rgb');
augmentedTestSet = augmentedImageDatastore(imageSize,...
testSet,'ColorPreprocessing','gray2rgb');
w1 = net.Layers(2).Weights;
w1 = mat2gray(w1);
featureLayer = 'fc1000';
trainingFeatures = activations(net,augmentedTrainingSet,...
featureLayer,'MiniBatchSize',32,'OutputAs','columns');
trainingLables = trainingSet.Labels;
classifier=fitcecoc(trainingFeatures,...
trainingLables,'Learner','Linear','Coding','onevsall','ObservationsIn','columns');
testFeature = activations(net,augmentedTestSet,...
featureLayer,'MiniBatchSize',32,'OutputAs','columns');
predictLabels = predict(classifier, testFeature,'ObservationsIn','columns');
testLables = testSet.Labels;
confMat = confusionmat(testLables , predictLabels);
confMat = bsxfun(@rdivide , confMat , sum(confMat,2));
mean(diag(confMat));
  3 comentarios
Mohammad Sami
Mohammad Sami el 13 de Abr. de 2020
Matlab also provides a free online course on deep learning. You can check it out here

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by