MATLAB Answers

How can I use 'Least Squares Solver and Jacobian' instead of 'fminunc'?

7 views (last 30 days)
Ahmed Nasr
Ahmed Nasr on 22 May 2020
Commented: Matt J on 27 May 2020
I want to use Least Squares Solver and Jacobian instead of fminunc, but I don't know what is the required changes must be done in the attached code.
Can anyone help me?
clc;
clear;
% System paramters:
N = 2;
K = 4;
C_l = 4;
counter = 0;
H = [-0.3208 -0.9784; -1.5994 -1.4689; -1.5197 -0.4568; -0.0993 -0.7667]; % 4*2 matrix
A = [-1 1; 0 1]; % 2*2 matrix
C = [-0.20 0.4 0.6 -0.2; -0.2 0.4 0.6 -0.2; 0.4 0.2 -0.2 0.4; 0.4 0.2 -0.2 0.4]; % 4*4 matrix
P = [250000 0 0 0; 0 250000 0 0; 0 0 250000 0; 0 0 0 250000]; % 4*4 matrix
beta_u = [50.2207 50.2207 20.3433 20.3433]; % 1*4 vector
beta_d = zeros(1,4); % intial value
%store inputs to a struct for shorter syntax
s=struct;[s.H,s.A,s.C,s.P,s.C_l,s.N,s.K]=deal(H,A,C,P,C_l,N,K);
while (sum(abs(beta_u-beta_d))>0.1 && counter< 500)
initial_guess = randn(2,4);
OLS = @(B_d,input_vars)sum(abs(beta_u-myfun(B_d,input_vars)).^2);%ordinary least squares cost function
opts = optimoptions(@fminunc,'MaxIterations',10000,'MaxFunctionEvaluations',50000);
[B,FVAL,grad] = fminunc(OLS, initial_guess, opts,s);
input_vars = s;
[beta_d, D_d]=myfun(B,input_vars);
counter = counter+1;
end
%calculate beta_d from B and the other inputs
function [beta_d, D_d]=myfun(B,input_vars)
%load parameters
s=input_vars;[H,A,C,P,C_l,N,K]=deal(s.H,s.A,s.C,s.P,s.C_l,s.N,s.K);
for j=1:1:N
d(j) = (B(j,:)*P*B(j,:)')/((2^(2*C_l))-(norm(A(:,j))^2));
end
D_d = diag(d);
for i=1:1:K
V_d(i)=C(i,:)*P*B'*H(i,:)'*inv(1+H(i,:)*(A'*D_d*A+B*P*B')*H(i,:)');
sigma_d(i)=norm((V_d(i)*H(i,:)*B-C(i,:))*(P^(1/2)))^2+(V_d(i)^2)*(1+H(i,:)*A'*D_d*A*H(i,:)');
beta_d(i)=((P(i,i))/sigma_d(:,i));
end
end

Accepted Answer

Matt J
Matt J on 23 May 2020
Edited: Matt J on 23 May 2020
Assuming D_d is the Jacobian of myfun, it would be,
while (sum(abs(beta_u-beta_d))>0.1 && counter< 500)
initial_guess = randn(2,4);
opts = optimoptions(@lsqcurvefit,'MaxIterations',10000,'MaxFunctionEvaluations',50000,...
'SpecifyObjectiveGradient',true);
[B,FVAL,residual,exitflag,output,lambda,jacobian]= ...
lsqcurvefit(@myfun, initial_guess,input_vars,beta_u,[],[],opts);
grad=jacobian.'*residual(:);
input_vars = s;
[beta_d, D_d]=myfun(B,input_vars);
counter = counter+1;
end

  4 Comments

Show 1 older comment
Matt J
Matt J on 24 May 2020
The error message has told you that your Jacobian calculation D_d should be 4-by-8. Why isn't it?
Matt J
Matt J on 27 May 2020
You told us above that D_d is the Jacobian of myfun. That means D_d must have as many columns as there are unknown variables, in this case 8.

Sign in to comment.

More Answers (0)


Translated by