pre-processing steps in palm vein image ????
14 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
how can I show the vascular in binary palm vein image I make this code and the vascular not apper in binary >> I=imread('001_l_460_01.jpg'); >> figure,imshow(I); >> level=graythresh(I); >> bw=im2bw(I,level); >> figure,imshow(bw); >> roipoly(bw); >> x=[408 514 708 598] x = 408 514 708 598 >> y=[313 96 213 421] y = 313 96 213 421 >> BW=poly2mask(x,y,576,768); >> h=fspecial('unsharp'); >> I2=roifilt2(h,I,BW); >> figure,imshow(I2); what is the wrong???
2 comentarios
Respuestas (3)
Image Analyst
el 7 de Nov. de 2012
What makes you think that some automatically picked threshold is going to be any good? Chances are it is not. And what makes you think doing an unsharp mask filter on a binary image is a good thing to do? I don't see the rationale for doing that.
2 comentarios
Image Analyst
el 8 de Nov. de 2012
That's not my field. Though I do know there has been research at UCLA on identifying vein patterns to identify criminals. There's probably more research that you know of or you can search Vision Bib
Shahmeer Rosli
el 30 de Nov. de 2015
Hello I would to ask. are my code for Palm Vein are correct? and is this all for the future extraction? and 1 more question what is the best classifier that suit with my future extraction. thank you
clear; close all; clc; clear variables; %% % Howto use the miura_* scripts.
img = im2double(imread('RightFive.bmp')); % Read the image
% img=img(:,:,1);
img=imcrop(img,[199.5 121.5 248 253]);
figure(1); imshow(img); title('Original Captured Image') %%
% img = imresize(img,0.8); % Downscale image
% Get the valid region, this is a binary mask which indicates the region of % the finger. For quick testing it is possible to use something like: % fvr = ones(size(img)); fvr = lee_region(img,40,200); % Get finger region
figure(2); imshow(fvr) title('Detected Finger Region') %% Extract veins using maximum curvature method % Filter Kernels Method sigma = 3; % Parameter v_max_curvature = miura_max_curvature(img,fvr,sigma);
% Binarise the vein image md = median(v_max_curvature(v_max_curvature>0)); v_max_curvature_bin = v_max_curvature > md;
figure(3); imshow(v_max_curvature_bin) title('Binarised Veins Extracted by Maximum Curvature Method')
%% thinning K=bwmorph(v_max_curvature_bin,'thin',Inf); figure(4) , imshow(K); % set(gcf,'position',[1 1 600 600]); title('Thinning');
%% CLEAN bw =bwmorph(K,'clean'); figure(5), imshow(bw), title ('Clean');
%% v_max_curvature_bin3= bwmorph(bw,'shrink'); figure, imshow(v_max_curvature_bin3)
v_max_curvature_bin1= bwmorph(bw,'bridge');
figure, imshow(v_max_curvature_bin1), title ('bridge');
v_max_curvature_bin2 = bwmorph(bw,'thin',Inf);
figure, imshow(v_max_curvature_bin2), title ('thin');
Visualise
Overlay the extracted veins on the original image
overlay_max_curvature = zeros([size(img) 3]);
overlay_max_curvature(:,:,1) = img;
overlay_max_curvature(:,:,2) = img + 0.4*v_max_curvature_bin;
overlay_max_curvature(:,:,3) = img;
figure;
imshow(overlay_max_curvature)
title('Maximum curvature method')
0 comentarios
Sowjanya M
el 25 de Mzo. de 2017
I want Matlab coding for combined features of finger texture and vein images.
0 comentarios
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!