Is there any way to add cross validation in trainingOptions function while using DNN?

3 visualizaciones (últimos 30 días)
Currently, I am training a CNN model to classify images. I am using splitEachLabel function to split the dataset into two segments. Training, validation. Then using augmentedImageDatastore for each set. Lastly using trainingOptions for setting the parameter and trainNetwork for training the model. Currently, the amount for validation is fixed in the dataset in every epoch (the fixed set of validation data is used). From my knowledge, this is called holdout validation approach.
I am wondering if it is possible to use k-fold corss validation approach rather than holdout validation while training a in deep neural network. If it's yes then how can I do it. How will I apply the dataset into k-fold?
TIA

Respuestas (1)

Mohammad Sami
Mohammad Sami el 30 de Ag. de 2020
There is no option for cross validation in training options for DNN.
  1 comentario
Mohammad Sami
Mohammad Sami el 30 de Ag. de 2020
With larger data set it may not be worth having k fold cross validation.
https://www.quora.com/Is-cross-validation-heavily-used-in-deep-learning-or-is-it-too-expensive-to-be-used

Iniciar sesión para comentar.

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Productos


Versión

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by