Plotting Discrete Time Functions

663 visualizaciones (últimos 30 días)
Bradley Johnson
Bradley Johnson el 22 de Sept. de 2020
Respondida: Satyam el 5 de Ag. de 2024
I need to plot 5 cos(π n /6 - π/2) as a discrete tim signal. But I am not getting the proper result.
n = [-5:0.001:5];
y = 5*cos(pi*(n/2)-(pi/2));
stem(n,y);
What am I missing from this code to get the discrete time signals?

Respuestas (3)

Austin Holmes
Austin Holmes el 11 de Nov. de 2021
The original poster asked for the discrete time signal not the continuous time signal. A discrete time signal just means sampling your continuous signal at discrete time intervals.
The simplest way this can be done is by increasing your step in n.
n = [-5:0.25:5];
y = 5*cos(pi*(n/2)-(pi/2));
stem(n,y);
The proper way to do this would be determining a sampling rate and implementing it in your code.

Freedom TSOKPO
Freedom TSOKPO el 23 de Sept. de 2020
I've just began with Matlab and I don't even know the function stem.
But I think this code can do it
clear all; clc;
n = -5:0.001:5;
y = 5*cos((n-1)*pi/2); %5*cos(pi*(n/2)-(pi/2));
figure
% axis([-6 6 -4 4]);
plot(n,y);

Satyam
Satyam el 5 de Ag. de 2024
t = -1:0.01:1;
impulse_continuous = @(t) t == 0;
unit_step_continuous = @(t) t >= 0;
unit_ramp_continuous = @(t) t .* (t >= 0);
exponential_continuous = @(t) exp(t);
sine_continuous = @(t) sin(2*pi*t);
cosine_continuous = @(t) cos(2*pi*t);
n = -10:10;
impulse_discrete = @(n) n == 0;
unit_step_discrete = @(n) n >= 0;
unit_ramp_discrete = @(n) n .* (n >= 0);
exponential_discrete = @(n) exp(n/10);
sine_discrete = @(n) sin(2*pi*n/10);
% Discrete Cosine Function
cosine_discrete = @(n) cos(2*pi*n/10);
% Plot Continuous Functions
figure;
subplot(3,2,1);
plot(t, impulse_continuous(t), 'LineWidth', 2);
title('Continuous Impulse Function');
xlabel('Time (t)');
ylabel('\delta(t)');
axis([-1 1 -0.5 1.5]);
grid on;
subplot(3,2,2);
plot(t, unit_step_continuous(t), 'LineWidth', 2);
title('Continuous Unit Step Function');
xlabel('Time (t)');
ylabel('u(t)');
axis([-1 1 -0.5 1.5]);
grid on;
subplot(3,2,3);
plot(t, unit_ramp_continuous(t), 'LineWidth', 2);
title('Continuous Unit Ramp Function');
xlabel('Time (t)');
ylabel('r(t)');
axis([-1 1 -0.5 1.5]);
grid on;
subplot(3,2,4);
plot(t, exponential_continuous(t), 'LineWidth', 2);
title('Continuous Exponential Function');
xlabel('Time (t)');
ylabel('e^t');
axis([-1 1 -0.5 3]);
grid on;
subplot(3,2,5);
plot(t, sine_continuous(t), 'LineWidth', 2);
title('Continuous Sine Function');
xlabel('Time (t)');
ylabel('sin(2\pi t)');
axis([-1 1 -1.5 1.5]);
grid on;
subplot(3,2,6);
plot(t, cosine_continuous(t), 'LineWidth', 2);
title('Continuous Cosine Function');
xlabel('Time (t)');
ylabel('cos(2\pi t)');
axis([-1 1 -1.5 1.5]);
grid on;
% Plot Discrete Functions
figure;
subplot(3,2,1);
stem(n, impulse_discrete(n), 'filled');
title('Discrete Impulse Function');
xlabel('n');
ylabel('\delta[n]');
axis([-10 10 -0.5 1.5]);
grid on;
subplot(3,2,2);
stem(n, unit_step_discrete(n), 'filled');
title('Discrete Unit Step Function');
xlabel('n');
ylabel('u[n]');
axis([-10 10 -0.5 1.5]);
grid on;
subplot(3,2,3);
stem(n, unit_ramp_discrete(n), 'filled');
title('Discrete Unit Ramp Function');
xlabel('n');
ylabel('r[n]');
axis([-10 10 -5 15]);
grid on;
subplot(3,2,4);
stem(n, exponential_discrete(n), 'filled');
title('Discrete Exponential Function');
xlabel('n');
ylabel('e^{n/10}');
axis([-10 10 -0.5 3]);
grid on;
subplot(3,2,5);
stem(n, sine_discrete(n), 'filled');
title('Discrete Sine Function');
xlabel('n');
ylabel('sin(2\pi n/10)');
axis([-10 10 -1.5 1.5]);
grid on;
subplot(3,2,6);
stem(n, cosine_discrete(n), 'filled');
title('Discrete Cosine Function');
xlabel('n');
ylabel('cos(2\pi n/10)');
axis([-10 10 -1.5 1.5]);
grid on;

Productos


Versión

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by