Cross validation in matlab
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Lester Lim
el 30 de En. de 2013
Editada: Greg Heath
el 1 de En. de 2018
What are the steps to performing cross validation on labels of data to get the accuracy of the results?
0 comentarios
Respuesta aceptada
Greg Heath
el 30 de En. de 2013
Editada: Greg Heath
el 1 de En. de 2018
Repeat until the parameter estimates converges
1.Randomly divide the data into 10 subsets
2.For each subset
a. Use the remaining 9 subsets to design a model
b. Test the model with the holdout subset
c. Update the average and standard deviation of
the holdout test set error.
d. If std < thresh1 or std < thresh2*avg, stop.
Hope this helps.
Thank you for formally accepting my answer.
Greg
0 comentarios
Más respuestas (1)
Ilya
el 30 de En. de 2013
The Statistics Toolbox provides utilities for cross-validation. If you are using R2011a or later, take a look at ClassificationTree.fit, ClassificationDiscriminant.fit, ClassificationKNN.fit and fitensemble. Notice the 'crossval' parameter and other related parameters. If you are working in an older release or not using any of these classifiers, the crossval function is a generic utility for that purpose.
Ver también
Categorías
Más información sobre Discriminant Analysis en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!