What is a good algorithm to use to check whether the finite line SEGMENT intersects the circle?

5 visualizaciones (últimos 30 días)
Suppose we know the start point (x1,y1), the end point (x2,y2) and the circle center and its radius .
How to make a collisionfree alogrithm to check whether the line segment passes through the circle or not.
I am asking this for the RRT (rapidly exploring random trees) algorithm.
  2 comentarios
Ameer Hamza
Ameer Hamza el 10 de Oct. de 2020
Given the line segment, center of the circle and its radius. You can develop a deterministic algorithm to check if they intersect or not. Why do you need RRT in this case?
Wai Han
Wai Han el 10 de Oct. de 2020
Editada: Wai Han el 10 de Oct. de 2020
I am writing the code for RRT algorithm as an assignment..
According to wikipedia, in the algorithm part Rapidly-exploring random trees algorithm,
"NEW_CONF" selects a new configuration qnew by moving an incremental distance Δq from qnear in the direction of qrand.
I have already found a way to find the new_conf.
The problem is that
Only if the line from new_conf to the nearest_node is collision free, the new_conf is set.
I am needing help how to check the line is collision free.
I tried this out and is not working properly.
Here is the code implemented in matlab.
function collision = collisioncheck(nearest_node,new_q,obstacles)
E = [nearest_node(2),nearest_node(3)];
L = [new_q(2),new_q(3)];
C = [obstacles(1,1),obstacles(1,2)];
r = obstacles(1,3);
d = L - E;
f = E - C;
a = dot(d,d);
b = dot(2*f,d);
c = dot(f, (f)-r^2);
discriminant = b*b-r*a*c;
if discriminant < 0
collision = false; % no collision
else
discriminant = sqrt(discriminant);
t1 = (-b - discriminant)/(2*a);
t2 = (-b + discriminant)/(2*a);
if t1 >=0 && t1 <=1
collision = true;
return
end
if t2 >=0 && t2 <=1
collision = true;
return
end
collision = false;
return
end
end
I have tried this code, the problem here is that.. the segment is working in only one direction.
For eg. if the end points of the segment are (x1,y1) and (x2,y2), the code is returning me as if the end points are (x1,y1) and (inf,inf)
Here is the simplify diagram to understand what I mean.
Thank you!

Iniciar sesión para comentar.

Respuesta aceptada

Image Analyst
Image Analyst el 10 de Oct. de 2020
See attached point-line distance demo.
Basically you need to see if the distance of the circle center to the line is less than the circle radius. If it is, there is an intersection. The code will show you how to do that.
  5 comentarios
Image Analyst
Image Analyst el 18 de Oct. de 2020
Using the right math, you can determine if the line from the point perpendicular to the infinite line intersects the line in the segments where you defined the line. So if (xi,yi) is the intersection point of the perpendicular line with the infinite line, and (x1,y1) and (x2,y2) are the segment endpoints, it seems like you could just do
isInsideSegment = (x1<xi) && (xi<x2) && (y1<yi) && (yi<y2);
Right? Does that make sense?
Wai Han
Wai Han el 19 de Oct. de 2020
Ohh yes, I got it now.
I was really struggling with this code. You help me out.
Thank you so much...

Iniciar sesión para comentar.

Más respuestas (0)

Productos


Versión

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by