how to avoid for loops or faster way for compute 3x3 avarage value of an image
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
ali eskandari
el 19 de Oct. de 2020
Editada: Image Analyst
el 19 de Oct. de 2020
I have a few pixels in an image and I want to calculate the average values of a 3x3 window centred on those pixels in Matlab. It should be noted that not all over the image, just a few desired pixels.
I tried this code and it works but I prefer to avoid using for loops. Is there another way for doing that?
clc
clear
close all
img = imread('cameraman.tif');
x= [10,15,20];
y= [15,25,35];
m=-1;
n=-1;
window = zeros(3,3);
Avg = zeros(max(size(x)),1)
for k=1:max(size(x))
for i = 1:3
for j=1:3
window(i,j) = img(x(k)+m,y(k)+n);
n=n+1;
end
n=-1;
m=m+1;
end
Avg(k) = mean(window,'all')
end
0 comentarios
Respuesta aceptada
Image Analyst
el 19 de Oct. de 2020
Editada: Image Analyst
el 19 de Oct. de 2020
If you're only doing it at 3 locations, don't worry about using for loops. It will be fast.
If you insist on using built-in functions to process the whole image, then...
Use imfilter():
kernel = ones(3)/9;
outputImage = imfilter(grayImage, kernel);
Or you can use conv2():
kernel = ones(3)/9;
outputImage = conv2(double(grayImage), kernel, 'same');
then you can reference outputImage(row, col) for the desired locations. Just be aware that y comes first, not x, so it's outputImage(y(1), x(1)), NOT outputImage(x(1), y(1)).
4 comentarios
Image Analyst
el 19 de Oct. de 2020
Editada: Image Analyst
el 19 de Oct. de 2020
Try this:
grayImage = imread('cameraman.tif');
x = [10, 15, 20];
y = [15, 25, 35];
windowWidth = 3;
halfWidth = floor(windowWidth/2)
Avg = zeros(length(x), 1);
for k = 1 : length(x)
% Convert x and y into row and column.
row = y(k);
col = x(k);
% Get subimage centered about the (x, y) location.
window = grayImage(row - halfWidth : row + halfWidth, col - halfWidth : col + halfWidth);
% Compute the mean of that subimage.
Avg(k) = mean(window,'all')
end
If you have more than a few thousand points in the images to inspect, then it's best to just filter the whole image with conv2() or imfilter() like I originally said, and pluck out the locations you want.
Más respuestas (0)
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!