svd(A) vs. eig(A'*A) and eig(A*A')

8 visualizaciones (últimos 30 días)
Ruye Wang
Ruye Wang el 20 de Feb. de 2013
When I use [U,S,V]=svd(A), I can reproduce A by U*S*V'. However, if I generate U and V by solving two eigenvalue problems [V,D]=eig(A'*A) and [U,D]=eig(A*A'), respectively, the resulting U and V may or may NOT satisfy U*S*V'=A, due possibly to the sign difference of some of the columns (eigenvectors). While the columns of the U's and V's produced by these two different methods have the same absolute values, they may have different signs, simply because if u_i is an eigenvector of A*A', so is -u_i.
But if U*S*V'~=A for some U and V, isn't the SVD theorem violated?

Respuesta aceptada

Jan
Jan el 20 de Feb. de 2013
I do not understand, where you see a violation. When you create U and V by another method, and consider, that they are not uniquely defined, it can be expected, that you get incompatible U and V matrices. If you want the orientation of the eigenvectors to satisfy U*S*V'=A, calculating them by solving the two separate eigenvalue problems eig(A'*A) and eig(A*A') is not sufficient.
  1 comentario
Ruye Wang
Ruye Wang el 7 de Mayo de 2013
Thanks for answering the question!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by