Force polynomial fit through multiple points
    18 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
I have a set of x, y data that I want to fit to a quadratic polynomial. Is it possible to force the fit through BOTH zero points?
3 comentarios
  Kye Taylor
      
 el 29 de Abr. de 2013
				
      Editada: Kye Taylor
      
 el 29 de Abr. de 2013
  
			Remember that a third order polynomial has the form
g(x) = a*x^3 + b*x^2 + c*x + d
A second order polynomial has the form
f(x) = a*x^2 + b*x + c
This same second order polynomial can be written
f(x) = a*(x-x1)*(x-x2)
where x1 and x2 are the roots of the polynomial and a is the coefficient on x^2. So the model y(x) = constant*(x-x1)*(x-x2) is exactly what you want.
Respuestas (1)
  Kye Taylor
      
 el 29 de Abr. de 2013
        
      Editada: Kye Taylor
      
 el 30 de Abr. de 2013
  
      I assume your data is given by two row vectors xData and yData, given for example by
xData = linspace(-2,2);
yData = 2.3*(xData-1).*(xData+1) + 0.2*rand(size(xData));
Then, since you know the roots, try this
% the roots you know
x1 = 1;
x2 = -1;
% the coefficient that makes the model
% y(x) = a*(x-x1)*x-x2) fit the data with 
% smallest squared-error  In other words
% a minimizes l2-error in a*designMatrix - yData'
designMatrix = ((xData-x1).*(xData-x2))';
a  = designMatrix\yData'
plot(xData, yData, 'ko', xData, a*designMatrix, 'r-')
legend('Data','Model')
0 comentarios
Ver también
Categorías
				Más información sobre Polynomials en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

