Rank one decomposition of a positive semi-definite matrix with inequality trace constraints
8 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Mingyang Sun
el 23 de Feb. de 2021
Comentada: Matt J
el 23 de Feb. de 2021
Suppose there is a square matrix A and a positive semi-definite matrix
, such that
Is there any ways I could do the rank one decomposition of matrix X, such that for
,

and keep the inquality constraints
Or at least hold for the most significant (largest eigenvalue)
?
Many thanks!
1 comentario
Respuesta aceptada
Matt J
el 23 de Feb. de 2021
Editada: Matt J
el 23 de Feb. de 2021
Is there any ways I could do the rank one decomposition of matrix X, such that
The obvious answer seems to be to test each k to see which satisfies
and choose any subset of them.
Or at least hold for the most significant (largest eigenvalue) ?
I don't know why you think this is a special case if your first requirement. This is not possible in general, as can be seen from the example A=diag([1,-4]) and X=diag(4,1). In this case, you can only satisfy the requirement with the least significant eigenvalue,
x1 =
2
0
x2 =
0
1
>> x1.'*A*x1, x2.'*A*x2
ans =
4
ans =
-4
2 comentarios
Matt J
el 23 de Feb. de 2021
If trace(A*X)<=0, There will always be some
satisfying the constraint. Once you have the
, you can check each one, as I mentioned.
Más respuestas (0)
Ver también
Categorías
Más información sobre Linear Algebra en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!